Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields

被引:1
作者
Boeckle, Gebhard [1 ,2 ]
Juschka, Ann-Kristin [1 ,2 ]
机构
[1] Heidelberg Univ, IWR, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Inst Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
11F80; 11F85; 11F70; MODULAR-FORMS; REPRESENTATIONS;
D O I
10.1017/fms.2023.82
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a finite extension of the p-adic field Q(p) of degree d, let F be a finite field of characteristic p and let D be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For the universal mod p pseudodeformation ring R-univ (D )of D, we prove the following: The ring R(D)(ps )is equidimensional of dimension dn2 +1. Its reduced quotient R-univ (D),red contains a dense open subset of regular points x whose associated pseudocharacter D-x is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of Spec R-univ (D) . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring R-univ (D) of D.
引用
收藏
页数:83
相关论文
共 52 条
[1]  
[Anonymous], 1964, Publ. Math. Inst. Hautes Etudes Sci.
[2]  
Auslander M., 1960, Trans. Amer. Math. Soc, V97, P367, DOI DOI 10.2307/1993378
[3]   Irreduzible Komponenten von 2-adischen Deformationsraumen [J].
Babnik, Maurice .
JOURNAL OF NUMBER THEORY, 2019, 203 :118-138
[4]  
Bellaïche J, 2009, ASTERISQUE, P1
[5]   Pseudodeformations [J].
Bellaiche, Joel .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :1163-1180
[6]   On some modular representations of the Borel subgroup of GL2(Qp) [J].
Berger, Laurent .
COMPOSITIO MATHEMATICA, 2010, 146 (01) :58-80
[7]  
Bockle G., 2023, On local Galois deformation rings'.
[8]  
Bockle G., 2023, Proc. Natl. Acad. Sci. USA, V120
[9]   Wiles defect for Hecke algebras that are not complete intersections [J].
Bockle, Gebhard ;
Khare, Chandrashekhar B. ;
Manning, Jeffrey .
COMPOSITIO MATHEMATICA, 2021, 157 (09) :2046-2088
[10]   Irreducibility of versal deformation rings in the (p, p)-case for 2-dimensional representations [J].
Boeckle, Gebhard ;
Juschka, Ann-Kristin .
JOURNAL OF ALGEBRA, 2015, 444 :81-123