Volumetric tumor tracking from a single cone-beam X-ray projection image enabled by deep learning

被引:13
作者
Dai, Jingjing [1 ]
Dong, Guoya [2 ]
Zhang, Chulong [1 ]
He, Wenfeng [1 ]
Liu, Lin [1 ]
Wang, Tangsheng [1 ]
Jiang, Yuming [3 ]
Zhao, Wei [4 ]
Zhao, Xiang [5 ]
Xie, Yaoqin [1 ]
Liang, Xiaokun [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, Hebei Key Lab Bioelectromagnet & Neural Engn, Tianjin Key Lab Bioelect & Intelligent Hlth, Tianjin 300130, Peoples R China
[3] Wake Forest Univ, Sch Med, Dept Radiat Oncol, Winston Salem, NC 27157 USA
[4] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[5] Tianjin Med Univ, Dept Radiol, Gen Hosp, Tianjin 300050, Peoples R China
基金
中国国家自然科学基金;
关键词
Tumor tracking; Single X-ray projection; Deformable image registration; Image-guided radiotherapy; 4-DIMENSIONAL COMPUTED-TOMOGRAPHY; FIDUCIAL MARKERS; LUNG; LOCALIZATION; INFORMATION;
D O I
10.1016/j.media.2023.102998
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiotherapy serves as a pivotal treatment modality for malignant tumors. However, the accuracy of radiotherapy is significantly compromised due to respiratory-induced fluctuations in the size, shape, and position of the tumor. To address this challenge, we introduce a deep learning-anchored, volumetric tumor tracking methodology that employs single-angle X-ray projection images. This process involves aligning the intraoperative two-dimensional (2D) X-ray images with the pre-treatment three-dimensional (3D) planning Computed Tomography (CT) scans, enabling the extraction of the 3D tumor position and segmentation. Prior to therapy, a bespoke patient-specific tumor tracking model is formulated, leveraging a hybrid data augmentation, style correction, and registration network to create a mapping from single-angle 2D X-ray images to the corresponding 3D tumors. During the treatment phase, real-time X-ray images are fed into the trained model, producing the respective 3D tumor positioning. Rigorous validation conducted on actual patient lung data and lung phantoms attests to the high localization precision of our method at lowered radiation doses, thus heralding promising strides towards enhancing the precision of radiotherapy.
引用
收藏
页数:12
相关论文
共 44 条
[1]   X-Ray to DRR Images Translation for Efficient Multiple Objects Similarity Measures in Deformable Model 3D/2D Registration [J].
Aubert, B. ;
Cresson, T. ;
de Guise, J. A. ;
Vazquez, C. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) :897-909
[2]   Evaluation of 4-dimensional Computed Tomography to 4-dimensional Cone-Beam Computed Tomography Deformable Image Registration for Lung Cancer Adaptive Radiation Therapy [J].
Balik, Salim ;
Weiss, Elisabeth ;
Jan, Nuzhat ;
Roman, Nicholas ;
Sleeman, William C. ;
Fatyga, Mirek ;
Christensen, Gary E. ;
Zhang, Cheng ;
Murphy, Martin J. ;
Lu, Jun ;
Keall, Paul ;
Williamson, Jeffrey F. ;
Hugo, Geoffrey D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 86 (02) :372-379
[3]  
Chen JY, 2022, Arxiv, DOI [arXiv:2111.10480, 10.48550/arXiv.2111.10480]
[4]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[5]   Anchored Transponder Guided Lung Radiation Therapy [J].
Dobelbower, Michael C. ;
Popple, Richard A. ;
Minnich, Douglas J. ;
Nader, Daniel A. ;
Zimmerman, Frank ;
Paris, Gerald E. ;
Herth, Felix J. F. ;
Gompelmann, Daniela ;
Roeder, Falk F. ;
Parikh, Parag J. ;
McDonald, Andrew M. .
PRACTICAL RADIATION ONCOLOGY, 2020, 10 (01) :E37-E44
[6]   Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy [J].
Dong, Bin ;
Graves, Yan Jiang ;
Jia, Xun ;
Jiang, Steve B. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (24) :8201-8215
[7]   Real-Time 2D-3D Deformable Registration with Deep Learning and Application to Lung Radiotherapy Targeting [J].
Foote, Markus D. ;
Zimmerman, Blake E. ;
Sawant, Amit ;
Joshi, Sarang C. .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 :265-276
[8]   A novel approach to 2D/3D registration of X-ray images using Grangeat's relation [J].
Frysch, Robert ;
Pfeiffer, Tim ;
Rose, Georg .
MEDICAL IMAGE ANALYSIS, 2021, 67
[9]  
Gao Cong, 2020, Med Image Comput Comput Assist Interv, V12263, P329, DOI 10.1007/978-3-030-59716-0_32
[10]   Multiview 2D/3D Rigid Registration via a Point-Of-Interest Network for Tracking and Triangulation [J].
Liao, Haofu ;
Lin, Wei-An ;
Zhang, Jiarui ;
Zhang, Jingdan ;
Luo, Jiebo ;
Zhou, S. Kevin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12830-12639