ASYMPTOTIC AUTONOMY OF RANDOM ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC NAVIER-STOKES EQUATIONS ON BOUNDED DOMAINS

被引:2
作者
Kinra, Kush [1 ]
Wang, Renhai [2 ]
Mohan, Manil T. [1 ]
机构
[1] Indian Inst Technol Roorkee IIT Roorkee, Dept Math, Haridwar Highway, Roorkee 247667, Uttarakhand, India
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550001, Peoples R China
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2024年 / 13卷 / 02期
基金
中国博士后科学基金;
关键词
Asymptotic autonomoy of backward compact random attractors; sto-chastic Navier-Stokes equations; backward asymptotic compactness; backward flattening estimate; RANDOM DYNAMICS; DRIVEN; BEHAVIOR;
D O I
10.3934/eect.2023049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the long-term random dynamics for a non-autonomous Navier-Stokes equation defined on a bounded smooth domain O driven by multiplicative and additive noise. For the two kinds of noise driven equations, we demonstrate that the existence of a unique pullback attractor which is backward compact and asymptotically autonomous in L2(O) and H0(O), respectively. The compact embedding H0(O) subset of L2(O) helps us to show the backward-uniform pullback asymptotic compactness (BUPAC) of the non-autonomous random dynamical systems (NRDS) in the Lebesgue space L2(O). The backward-uniform flattening property of the solutions is used to prove the BUPAC of the NRDS in the Sobolev space H0(O).
引用
收藏
页码:349 / 381
页数:33
相关论文
共 53 条
[1]  
Arnold L., 1998, Springer Monographs in Mathematics
[2]   Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains [J].
Brzezniak, Z. ;
Caraballo, T. ;
Langa, J. A. ;
Li, Y. ;
Lukaszewicz, G. ;
Real, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3897-3919
[3]   PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :87-102
[4]   Asymptotic compactness and absorbing sets for 2D stochastic Navier- Stokes equations on some unbounded domains [J].
Brzezniak, Zdzislaw ;
Li, Yuhong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5587-5629
[5]   Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains [J].
Caraballo, Tomas ;
Guo, Boling ;
Tuan, Nguyen Huy ;
Wang, Renhai .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (06) :1700-1730
[6]   ASYMPTOTIC BEHAVIOUR OF A STOCHASTIC SEMILINEAR DISSIPATIVE FUNCTIONAL EQUATION WITHOUT UNIQUENESS OF SOLUTIONS [J].
Caraballo, Tomas ;
Garrido-Atienza, Maria J. ;
Schmalfuss, Bjoern ;
Valero, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (02) :439-455
[7]   Perfect Equilibria in Replies in Multiplayer Bargaining [J].
Carvalho, Luis .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[8]   Multivalued random dynamics of Benjamin-Bona-Mahony equations driven by nonlinear colored noise on unbounded domains [J].
Chen, Pengyu ;
Wang, Bixiang ;
Wang, Renhai ;
Zhang, Xuping .
MATHEMATISCHE ANNALEN, 2023, 386 (1-2) :343-373
[9]  
Chueshov I, 2002, LECT NOTES MATH, V1779, P1
[10]  
Chueshov I., 2015, Dynamics of Quasi-Stable Dissipative Systems