Theoretical Prediction of Electrical Conductivity Percolation of Poly(lactic acid)-Carbon Nanotube Composites in DC and RF Regime

被引:4
作者
Beltran, Freddys R. R. [1 ,2 ]
Aksas, Hammouche [3 ]
Salah, Lakhdar Sidi [3 ]
Danlee, Yann [4 ]
Huynen, Isabelle [4 ]
机构
[1] Univ Politecn Madrid, Dept Ingn Quim Ind & Medio Ambiente, ETSI Ind, Madrid 28006, Spain
[2] Univ Politecn Madrid, Res Grp Polimeros Caracterizac & Aplicac POLCA, Madrid 28006, Spain
[3] MHamed Bougara Univ, Fac Technol, Res Unit Mat Proc & Environm URMPE, Boumerdes 35000, Algeria
[4] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math I, Pl Levant 3, B-1348 Louvain La Neuve, Belgium
基金
欧盟地平线“2020”;
关键词
percolation; polylactic acid; carbon nanotube; composite; modelling; electrical conductivity; microwave; CARBON NANOTUBES; DIELECTRIC-CONSTANT; POLYMER; NANOCOMPOSITES; INTERPHASE; THRESHOLD; MODELS; THIN; CNT; AC;
D O I
10.3390/ma16155356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer composites based on polylactic acid (PLA) reinforced with 0.25-5 wt.% of carbon nanotubes (CNTs) were synthesized by melt blending. The static (DC) and microwave (RF) electrical conductivity have been investigated on the PLA-CNT composites. The electrical percolation threshold has been theoretically determined using classical models of percolation in order to predict the conductivity of the different nanocomposites. Through the fitting process, it has been found that the percolation threshold is obtained at 1 wt.% of CNTs in the DC regime and reached below 0.25 wt.% of CNTs in the microwave regime. Among the Mamunya, McLachlan, or GEM models, the McCullough model remarkably fits the experimental DC and RF electrical conductivities. The obtained results are correlated to the electrical properties of a range of CNT-based composites, corresponding to the percolation threshold required for a three-dimensional network of CNTs into the polymer matrix.
引用
收藏
页数:14
相关论文
共 65 条
[1]   Carbon nanotube polymer composites [J].
Andrews, R ;
Weisenberger, MC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) :31-37
[2]   DC and AC conductivity of carbon nanotubes-polyepoxy composites [J].
Barrau, S ;
Demont, P ;
Peigney, A ;
Laurent, C ;
Lacabanne, C .
MACROMOLECULES, 2003, 36 (14) :5187-5194
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[5]   Electrical properties of conducting polymer composites: Experimental and modeling approaches [J].
Bouknaitir, I. ;
Aribou, N. ;
Kassim, S. A. Elhad ;
El Hasnaoui, M. ;
Melo, B. M. G. ;
Achour, M. E. ;
Costa, L. C. .
SPECTROSCOPY LETTERS, 2017, 50 (04) :196-199
[6]   ELECTRICAL RESISTIVITY OF CONDUCTING PARTICLES IN AN INSULATING MATRIX [J].
BUECHE, F .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (11) :4837-&
[7]   Percolation in composites [J].
Bunde, A ;
Dieterich, W .
JOURNAL OF ELECTROCERAMICS, 2000, 5 (02) :81-92
[8]   Evaluation of electrical conductivity models for conductive polymer composites [J].
Clingerman, ML ;
King, JA ;
Schulz, KH ;
Meyers, JD .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 83 (06) :1341-1356
[9]   Electrical Percolation, Morphological and Dispersion Properties of MWCNT/PMMA Nanocomposites [J].
da Silva Leite Coelho, Paulo Henrique ;
Marchesin, Marcel Silva ;
Morales, Ana Rita ;
Bartoli, Julio Roberto .
MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2014, 17 :127-132
[10]   Carbon nanotube-filled polymer of electrical conductivity in composites.: Numerical simulation three-dimensional entangled fibrous networks [J].
Dalmas, Florent ;
Dendievel, Rémy ;
Chazeau, Laurent ;
Cavaillé, Jean-Yves ;
Gauthier, Catherine .
ACTA MATERIALIA, 2006, 54 (11) :2923-2931