Space-local Navier-Stokes turbulence

被引:0
|
作者
Araki, Ryo [1 ,2 ,3 ]
Bos, Wouter J. T. [1 ]
Goto, Susumu [2 ]
机构
[1] Univ Lyon, Univ Claude Bernard Lyon 1, INSA Lyon, UMR5509,Ecole Cent Lyon,CNRS,LMFA, F-69130 Ecully, France
[2] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[3] Tokyo Univ Sci, Fac Sci & Technol, Dept Mech & Aerosp Engn, Yamazaki 2641, Noda 2788510, Japan
关键词
ENERGY FLUX; VORTICITY; DYNAMICS;
D O I
10.1103/PhysRevFluids.9.014603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the physical-space locality of interactions in three-dimensional in- compressible turbulent flow. To that, we modify the nonlinear terms of the vorticity equation such that the vorticity field is advected and stretched by the locally induced velocity. This space-local velocity field is defined by the truncated Biot-Savart law, where only the neighboring vorticity field in a sphere of radius R is integrated. We conduct direct numerical simulations of the space-local system to investigate its statistics in the inertial range. We observe a standard E(k) alpha k(-5/3) scaling of the energy spectrum associated with an energy cascade for scales smaller than the space-local domain size k >> R-1. This result is consistent with the assumption [Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941)] made for the space locality of the nonlinear interactions. The enstrophy amplification is suppressed for larger scales k << R-1, and for these scales, the system exhibits a scaling consistent with a conservative enstrophy cascade.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] λ-Navier-Stokes turbulence
    Alexakis, A.
    Biferale, L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2219):
  • [2] On a Fourier space master equation for Navier-Stokes turbulence
    Breuer, HP
    Petruccione, F
    Weber, F
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1996, 100 (03): : 461 - 468
  • [3] LOCAL INTERACTIONS IN RENORMALIZATION METHODS FOR NAVIER-STOKES TURBULENCE
    ZHOU, Y
    VAHALA, G
    PHYSICAL REVIEW A, 1992, 46 (02): : 1136 - 1139
  • [4] IS NAVIER-STOKES TURBULENCE CHAOTIC
    DEISSLER, RG
    PHYSICS OF FLUIDS, 1986, 29 (05) : 1453 - 1457
  • [5] NAVIER-STOKES EQUATIONS AND THE CREATION OF TURBULENCE
    SCHULTZGRUNOW, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1983, 63 (09): : 456 - 457
  • [6] Bridge relations in Navier-Stokes turbulence
    Celani, A
    Biskamp, D
    EUROPHYSICS LETTERS, 1999, 46 (03): : 332 - 338
  • [7] EFFECT OF HYPERVISCOSITY ON THE NAVIER-STOKES TURBULENCE
    Younsi, Abdelhafid
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [8] Scaling properties of Navier-Stokes turbulence
    Liu, Zhao-cun
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (03): : 392 - 397
  • [9] Scaling properties of Navier-Stokes turbulence
    Zhao-cun LIU (School of Environment and Planning
    Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2009, 10 (03) : 392 - 397
  • [10] Scaling properties of Navier-Stokes turbulence
    Zhao-cun Liu
    Journal of Zhejiang University-SCIENCE A, 2009, 10 : 392 - 397