An Identity for the Coefficients of Characteristic Polynomials of Hyperplane Arrangements

被引:1
作者
Kabluchko, Zakhar [1 ]
机构
[1] Westfal Wilhelms Univ Munster, Inst Math Stochast, Orleans Ring 10, D-48149 Munster, Germany
关键词
Hyperplane arrangement; Metric projection; Chambers; Reflection arrangement; Characteristic polynomial; Normal cone; Conic intrinsic volume; POLYHEDRAL CONES; VOLUMES;
D O I
10.1007/s00454-023-00577-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a finite collection of affine hyperplanes in R-d. The hyperplanes dissect Rd into finitely many polyhedral chambers. For a point x is an element of R-d and a chamber P themetric projection of x onto P is the unique point y is an element of P minimizing the Euclidean distance to x. The metric projection is contained in the relative interior of a uniquely defined face of P whose dimension is denoted by dim(x, P). We prove that for every given k is an element of{0,..., d}, the number of chambers P for which dim(x, P) = k does not depend on the choice of x, with an exception of some Lebesgue null set. Moreover, this number is equal to the absolute value of the k-th coefficient of the characteristic polynomial of the hyperplane arrangement. In a special case of reflection arrangements, this proves a conjecture of Drton and Klivans [A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Amer. Math. Soc. 138(8), 2873-2887 (2010)].
引用
收藏
页码:1476 / 1498
页数:23
相关论文
共 25 条
[1]   Intrinsic Volumes of Polyhedral Cones: A Combinatorial Perspective [J].
Amelunxen, Dennis ;
Lotz, Martin .
DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (02) :371-409
[2]   Living on the edge: phase transitions in convex programs with random data [J].
Amelunxen, Dennis ;
Lotz, Martin ;
McCoy, Michael B. ;
Tropp, Joel A. .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (03) :224-294
[3]  
Bona M., 2015, Handbook of Enumerative Combinatorics, Discrete Mathematics and Its Applications
[4]   Identities linking volumes of convex hulls [J].
Cowan, Richard .
ADVANCES IN APPLIED PROBABILITY, 2007, 39 (03) :630-644
[5]  
De Concini C, 2006, REND LINCEI-MAT APPL, V17, P155
[6]  
Denham G, 2008, REND LINCEI-MAT APPL, V19, P59
[7]   A GEOMETRIC INTERPRETATION OF THE CHARACTERISTIC POLYNOMIAL OF REFLECTION ARRANGEMENTS [J].
Drton, Mathias ;
Klivans, Caroline J. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (08) :2873-2887
[8]   An Euler-type version of the local Steiner formula for convex bodies [J].
Glasauer, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :618-622
[9]  
Glasauer S., 1995, THESIS U FREIBURG
[10]  
Hug D., 1999, MEASURES CURVATURES