Exploration of Quantum Milne-Mercer-Type Inequalities with Applications

被引:12
作者
Bin-Mohsin, Bandar [1 ]
Javed, Muhammad Zakria [2 ]
Awan, Muhammad Uzair [2 ]
Khan, Awais Gul [2 ]
Cesarano, Clemente [3 ]
Noor, Muhammad Aslam [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 145111, Saudi Arabia
[2] Govt Coll Univ, Dept Math, Faisalabad 54000, Pakistan
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[4] COMSATS Univ Islamabad, Dept Math, Islamabad 45550, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
convex; quantum; Hermite-Hadamard; Milne-Mercer; differentiable; HERMITE; CONVEX;
D O I
10.3390/sym15051096
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum calculus provides a significant generalization of classical concepts and overcomes the limitations of classical calculus in tackling non-differentiable functions. Implementing the q-concepts to obtain fresh variants of classical outcomes is a very intriguing aspect of research in mathematical analysis. The objective of this article is to establish novel Milne-type integral inequalities through the utilization of the Mercer inequality for q-differentiable convex mappings. In order to accomplish this task, we begin by demonstrating a new quantum identity of the Milne type linked to left and right q derivatives. This serves as a supporting result for our primary findings. Our approach involves using the q-equality, well-known inequalities, and convex mappings to obtain new error bounds of the Milne-Mercer type. We also provide some special cases, numerical examples, and graphical analysis to evaluate the efficacy of our results. To the best of our knowledge, this is the first article to focus on quantum Milne-Mercer-type inequalities and we hope that our methods and findings inspire readers to conduct further investigation into this problem.
引用
收藏
页数:16
相关论文
共 33 条
  • [1] Some Hermite-Hadamard's type local fractional integral inequalities for generalized γ-preinvex function with applications
    Al-Sa'di, Sa'ud
    Bibi, Maria
    Muddassar, Muhammad
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2941 - 2954
  • [2] The Falling Body Problem in Quantum Calculus
    Alanazi, Abdulaziz M.
    Ebaid, Abdelhalim
    Alhawiti, Wadha M.
    Muhiuddin, Ghulam
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [3] A new version of q-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Khan, Sundas
    [J]. MATHEMATICA SLOVACA, 2023, 73 (02) : 369 - 386
  • [4] On Some Error Bounds for Milne's Formula in Fractional Calculus
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    Feckan, Michal
    [J]. MATHEMATICS, 2023, 11 (01)
  • [5] Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
  • [6] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [7] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [8] Experimental estimation of one-parameter qubit gates in the presence of phase diffusion
    Brivio, Davide
    Cialdi, Simone
    Vezzoli, Stefano
    Gebrehiwot, Berihu Teklu
    Genoni, Marco G.
    Olivares, Stefano
    Paris, Matteo G. A.
    [J]. PHYSICAL REVIEW A, 2010, 81 (01):
  • [9] On new Milne-type inequalities for fractional integrals
    Budak, Huseyin
    Kosem, Pinar
    Kara, Hasan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [10] Some New Quantum Hermite-Hadamard-Like Inequalities for Coordinated Convex Functions
    Budak, Huseyin
    Ali, Muhammad Aamir
    Tarhanaci, Meliha
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 186 (03) : 899 - 910