Analysis of Neutral Fractional Differential Equation via the Method of Upper and Lower Solution

被引:9
作者
Dhawan, Kanika [1 ]
Vats, Ramesh Kumar [1 ]
Vijayakumar, V. [2 ]
机构
[1] Natl Inst Technol, Dept Math & Sci Comp, Hamirpur 177005, India
[2] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Arzela-Ascoli theorem; Caputo-Hadamard derivative; Monotone sequences; Neutral fractional differential equations; Upper and lower solutions; SYSTEMS; DELAY;
D O I
10.1007/s12346-023-00795-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript is concerned about the study of the existence of solutions for the class of nonlinear neutral Caputo-Hadamard fractional differential equations including integral terms. In order to establish the necessary conditions of solvability for the proposed problem, we apply the semi-group property of Hadamard fractional integral operator. Also, under the appropriate conditions, we demonstrate that the solution set for the proposed problem is non-empty by using Arzela-Ascoli theorem and the method of upper and lower solutions. In contrast to the fundamental results graphical example is also presented in order to validate the findings.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Caputo-Hadamard Fractional Derivatives of Variable Order [J].
Almeida, Ricardo .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) :1-19
[2]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[3]  
[Anonymous], 2012, Fractional calculus: Models and numerical methodsvol
[4]  
Asif NA., 2015, ELECTRON J DIFFER EQ, V2015, P1
[5]   THE LAMB-BATEMAN INTEGRAL EQUATION AND THE FRACTIONAL DERIVATIVES [J].
Babusci, Danilo ;
Dattoli, Giuseppe ;
Sacchetti, Dario .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (02) :317-320
[6]  
Bai Y, 2017, J. Nonlinear Sci. Appl., V10, P5744
[7]  
Batool A., 2022, Arab J. Basic Appl. Sci., V29, P249, DOI 10.1080/25765299.2022.2112646
[8]   A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems [J].
Batool, Asmat ;
Talib, Imran ;
Bourguiba, Rym ;
Suwan, Iyad ;
Abdeljawad, Thabet ;
Riaz, Muhammad Bilal .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) :2145-2154
[9]   Methods for linear systems of circuit delay differential equations of neutral type [J].
Bellen, A ;
Guglielmi, N ;
Ruehli, AE .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1999, 46 (01) :212-216
[10]   On the Caputo-Hadamard fractional IVP with variable order using the upper-lower solutions technique [J].
Bouazza, Zoubida ;
Souhila, Sabit ;
Etemad, Sina ;
Souid, Mohammed Said ;
Akguel, Ali ;
Rezapour, Shahram ;
De la Sen, Manuel .
AIMS MATHEMATICS, 2023, 8 (03) :5484-5501