Comparison of time series clustering methods for identifying novel subphenotypes of patients with infection

被引:14
作者
Bhavani, Sivasubramanium, V [1 ,2 ,12 ]
Xiong, Li [3 ]
Pius, Abish [4 ]
Semler, Matthew [5 ]
Qian, Edward T. [5 ]
Verhoef, Philip A. [6 ,7 ]
Robichaux, Chad [8 ]
Coopersmith, Craig M. [2 ,9 ]
Churpek, Matthew M. [10 ,11 ]
机构
[1] Emory Univ, Dept Med, Atlanta, GA 30322 USA
[2] Emory Crit Care Ctr, Atlanta, GA USA
[3] Emory Univ, Dept Comp Sci, Atlanta, GA 30322 USA
[4] Univ Pittsburgh, Dept Computat & Syst Biol, Sch Med, Pittsburgh, PA USA
[5] Vanderbilt Univ, Dept Med, Nashville, TN USA
[6] Univ Hawaii, John A Burns Sch Med, Dept Med, Honolulu, HI USA
[7] Hawaii Permanente Med Grp, Honolulu, HI USA
[8] Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Surg, Atlanta, GA 30322 USA
[10] Univ Wisconsin, Dept Med, Madison, WI USA
[11] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI USA
[12] Emory Univ, Sch Med, Div Pulm Allergy Crit Care & Sleep Med, 615 Michael St, Atlanta, GA 30322 USA
关键词
infection; sepsis; vital signs; subphenotypes; phenotypes; SEPSIS;
D O I
10.1093/jamia/ocad063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective: Severe infection can lead to organ dysfunction and sepsis. Identifying subphenotypes of infected patients is essential for personalized management. It is unknown how different time series clustering algo-rithms compare in identifying these subphenotypes.Materials and Methods: Patients with suspected infection admitted between 2014 and 2019 to 4 hospitals in Emory healthcare were included, split into separate training and validation cohorts. Dynamic time warping (DTW) was applied to vital signs from the first 8 h of hospitalization, and hierarchical clustering (DTW-HC) and partition around medoids (DTW-PAM) were used to cluster patients into subphenotypes. DTW-HC, DTW-PAM, and a previ-ously published group-based trajectory model (GBTM) were evaluated for agreement in subphenotype clusters, trajectory patterns, and subphenotype associations with clinical outcomes and treatment responses.Results: There were 12473 patients in training and 8256 patients in validation cohorts. DTW-HC, DTW-PAM, and GBTM models resulted in 4 consistent vitals trajectory patterns with significant agreement in clustering (71-80% agreement, P< .001): group A was hyperthermic, tachycardic, tachypneic, and hypotensive. Group B was hyperthermic, tachycardic, tachypneic, and hypertensive. Groups C and D had lower temperatures, heart rates, and respiratory rates, with group C normotensive and group D hypotensive. Group A had higher odds ratio of 30-day inpatient mortality (P< .01) and group D had significant mortality benefit from balanced crystalloids compared to saline (P< .01) in all 3 models.Discussion: DTW-and GBTM-based clustering algorithms applied to vital signs in infected patients identified consistent subphenotypes with distinct clinical outcomes and treatment responses.Conclusion: Time series clustering with distinct computational approaches demonstrate similar performance and significant agreement in the resulting subphenotypes.
引用
收藏
页码:1158 / 1166
页数:9
相关论文
共 27 条
[1]   Time-series clustering - A decade review [J].
Aghabozorgi, Saeed ;
Shirkhorshidi, Ali Seyed ;
Teh Ying Wah .
INFORMATION SYSTEMS, 2015, 53 :16-38
[2]  
Berndt D.J., 1994, KDD Workshop, P359
[3]   Development and validation of novel sepsis subphenotypes using trajectories of vital signs [J].
Bhavani, Sivasubramanium, V ;
Semler, Matthew ;
Qian, Edward T. ;
Verhoef, Philip A. ;
Robichaux, Chad ;
Churpek, Matthew M. ;
Coopersmith, Craig M. .
INTENSIVE CARE MEDICINE, 2022, 48 (11) :1582-1592
[4]   Temperature Trajectory Subphenotypes Correlate With Immune Responses in Patients With Sepsis [J].
Bhavani, Sivasubramanium V. ;
Wolfe, Krysta S. ;
Hrusch, Cara L. ;
Greenberg, Jared A. ;
Krishack, Paulette A. ;
Lin, Julie ;
Lecompte-Osorio, Paola ;
Carey, Kyle A. ;
Kress, John P. ;
Coopersmith, Craig M. ;
Sperling, Anne I. ;
Verhoef, Philip A. ;
Churpek, Matthew M. ;
Patel, Bhakti K. .
CRITICAL CARE MEDICINE, 2020, 48 (11) :1645-1653
[5]   Identifying Novel Sepsis Subphenotypes Using Temperature Trajectories [J].
Bhavani, Sivasubramanium, V ;
Carey, Kyle A. ;
Gilbert, Emily R. ;
Afshar, Majid ;
Verhoef, Philip A. ;
Churpek, Matthew M. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 200 (03) :327-335
[6]   Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts [J].
Bos, Lieuwe D. J. ;
Sjoding, Michael ;
Sinha, Pratik ;
Bhavani, Sivasubramanium, V ;
Lyons, Patrick G. ;
Bewley, Alice F. ;
Botta, Michela ;
Tsonas, Anissa M. ;
Neto, Ary Serpa ;
Schultz, Marcus J. ;
Dickson, Robert P. ;
Paulus, Frederique .
LANCET RESPIRATORY MEDICINE, 2021, 9 (12) :1377-1386
[7]   Balanced Crystalloids versus Saline in Sepsis A Secondary Analysis of the SMART Clinical Trial [J].
Brown, Ryan M. ;
Wang, Li ;
Coston, Taylor D. ;
Krishnan, Nathan I. ;
Casey, Jonathan D. ;
Wanderer, Jonathan P. ;
Ehrenfeld, Jesse M. ;
Byrne, Daniel W. ;
Stollings, Joanna L. ;
Siew, Edward D. ;
Bernard, Gordon R. ;
Self, Wesley H. ;
Rice, Todd W. ;
Semler, Matthew W. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 200 (12) :1487-1495
[8]   Biomarker identification using dynamic time warping analysis: a longitudinal cohort study of patients with COVID-19 in a UK tertiary hospital [J].
Burke, Hannah ;
Freeman, Anna ;
O'Regan, Paul ;
Wysocki, Oskar ;
Freitas, Andre ;
Dushianthan, Ahilanandan ;
Celinski, Michael ;
Batchelor, James ;
Phan, Hang ;
Borca, Florina ;
Sheard, Natasha ;
Williams, Sarah ;
Watson, Alastair ;
Fitzpatrick, Paul ;
Landers, Donal ;
Wilkinson, Tom .
BMJ OPEN, 2022, 12 (02)
[9]   Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach [J].
Cazalis M.-A. ;
Lepape A. ;
Venet F. ;
Frager F. ;
Mougin B. ;
Vallin H. ;
Paye M. ;
Pachot A. ;
Monneret G. .
Intensive Care Medicine Experimental, 2 (1) :1-17
[10]   Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients [J].
Churpek, Matthew M. ;
Zadravecz, Frank J. ;
Winslow, Christopher ;
Howell, Michael D. ;
Edelson, Dana P. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 192 (08) :958-964