???????Generalized derivatives and Laplace transform in (k, ?)-Hilfer form

被引:7
作者
Basci, Yasemin [1 ]
Misir, Adil [2 ]
Ogrekci, Sueleyman [3 ]
机构
[1] Bolu Abant Izzet Baysal Univ, Fac Arts & Sci, Dept Math, Bolu, Turkiye
[2] Gazi Univ, Fac Sci, Dept Math, Ankara, Turkiye
[3] Amasya Univ, Fac Arts & Sci, Dept Math, Amasya, Turkiye
关键词
generalized fractional derivatives; generalized fractional integrals; generalized Laplace transforms; (k; )-Hilfer form; k-Mittag-Leffler function; k-Pochhammer symbol; FRACTIONAL CALCULUS OPERATORS;
D O I
10.1002/mma.9129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we discuss the most generalized derivatives and integrals and their features in (k, psi)-Hilfer form. Furthermore, we define the new generalized Laplace transform to the generalized derivatives and integrals in (k, psi)-Hilfer form. Also, we have obtained the new generalized Laplace transforms of some expressions. These statements obtained cover many previous studies. Finally, we have given an example that will both use some of the results obtained and emphasize the importance of parameters such ask, rho, psi of the (k, psi)-generalized Laplace transform.
引用
收藏
页码:10400 / 10420
页数:21
相关论文
共 79 条
[1]   A Generalized Definition of the Fractional Derivative with Applications [J].
Abu-Shady, M. ;
Kaabar, Mohammed K. A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[2]   Some generalized fractional calculus operators and their applications in integral equations [J].
Agrawal, Om P. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :700-711
[3]   Some Functional Sections in Topological Sequence Spaces [J].
Akdemir, Ahmet Ocak ;
Ersoy, Merve Temizer ;
Furkan, Hasan ;
Ragusa, Maria Alessandra .
JOURNAL OF FUNCTION SPACES, 2022, 2022
[4]   Some new inequalities for (k, s)-fractional integrals [J].
Aldhaifallah, M. ;
Tomar, M. ;
Nisar, K. S. ;
Purohit, S. D. .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09) :5374-5381
[5]   Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06)
[6]  
[Anonymous], 2008, IN APPL C IN APPL NO
[7]  
Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, DOI DOI 10.1002/9781118577530
[8]   Study of generalized type K-fractional derivatives [J].
Azam, M. K. ;
Farid, G. ;
Rehman, M. A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[9]  
Bainov DrumiD., 2013, Integral inequalities and applications, V57
[10]  
Belgacem F. B. M., 2006, J. Appl. Math. Stochastic Anal., V2006, DOI DOI 10.1155/JAMSA/2006/91083