Balancing the mechanical properties of Al0.45CoCrFeNiTix high-entropy alloys by tailoring titanium content

被引:12
作者
Wang, Enhao [1 ]
Li, Jiaqi [1 ]
Kang, Fuwei [1 ]
Jiang, Fengchun [2 ]
Lv, Lisong [1 ]
Dai, Bo [3 ]
Cao, Yang [4 ]
Jiang, Wei [1 ]
机构
[1] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150040, Peoples R China
[2] Harbin Engn Univ, Yantai Res Inst, Yantai 264006, Peoples R China
[3] Harbin Dongan High Precis Tube Shaft Mfg Co Ltd, Harbin 150060, Peoples R China
[4] Zhengzhou Univ, Coll Mech & Elect Engn, Light Ind, Zhengzhou 450002, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 28卷
基金
中国国家自然科学基金;
关键词
Al 0.45 CoCrFeNiTi x; High-entropy alloys; L2; 1; phase; Mechanical properties; Strengthening mechanisms; MICROSTRUCTURE; PHASE; BEHAVIORS;
D O I
10.1016/j.jmrt.2023.12.079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the microstructure and mechanical properties of Al0.45CoCrFeNiTix (x = 0, 0.25, 0.5, 0.75, 1.0) high-entropy alloys were investigated. Various techniques including XRD, SEM, EBSD, and TEM were employed, along with hardness tests, compressive tests, and tensile tests conducted at room temperature. Our findings reveal that the alloy's microstructure changes from FCC + BCC to FCC + BCC + L21 phase as the Ti content increases. Specifically, the BCC content increases from 0.9 % to 62.3 %. This alteration in microstructure leads to a significant enhancement in the compressive yield strength of the alloy, from 305.96 MPa to 1492.53 MPa. The observed strengthening effect can be attributed to the increased BCC content and the formation of the L21 phase within the alloy. The results of the tensile experiments demonstrate that the Ti0.25 alloy exhibits the most favorable overall properties, possessing a yield strength of 619 MPa. This represents a significant increase of 64.6 % when compared to Ti0. The strengthening mechanism of the Al0.45CoCrFeNiTix high-entropy alloy is thoroughly discussed. The main strengthening mechanisms of the alloy system are fine grain strengthening, solid solution strengthening and second phase strengthening. This study achieves a balance between strength and ductility by modulating the phase composition of the alloy, laying the foundation for further development and research into the properties of the high-entropy alloys.
引用
收藏
页码:967 / 979
页数:13
相关论文
共 50 条
  • [31] Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys
    Hou, Jinxiong
    Shi, Xiaohui
    Qiao, Junwei
    Zhang, Yong
    Liaw, Peter K.
    Wu, Yucheng
    MATERIALS & DESIGN, 2019, 180
  • [32] Effect of Aluminum Content on Microstructure and Mechanical Properties of High-Entropy AlxCoCuNiTi Alloys
    Wang, Z.
    Zhou, J.
    Ma, M.
    Zhao, L.
    METAL SCIENCE AND HEAT TREATMENT, 2021, 63 (5-6) : 297 - 303
  • [33] Effect of Al content on microstructure and wear properties of FeCrNiMnAlx high-entropy alloys
    Xing, Xuewei
    Liu, Ying
    Hu, Jinkang
    Li, Wei
    MATERIALS RESEARCH EXPRESS, 2022, 9 (03)
  • [34] Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering
    Yang, Qiumin
    Tang, Yanyuan
    Wen, Yan
    Zhang, Qinying
    Deng, Dengfei
    Nai, Xinren
    POWDER METALLURGY, 2018, 61 (02) : 115 - 122
  • [35] Evolution of phase, microstructure and mechanical properties of as-cast Al0.3CoCrFeNiTix high entropy alloys
    Gu, Xianyu
    Zhuang, Yanxin
    Jia, Peng
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [36] Microstructure, mechanical properties and magnetic properties of FeCoNiCuTiSix high-entropy alloys
    Qu, HuaiZhi
    Gong, MingLong
    Liu, FengFang
    Gao, BingYu
    Bai, Jing
    Gao, QiuZhi
    Li, Song
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (03) : 459 - 466
  • [37] Effect of Aluminum Content on Microstructure and Mechanical Properties of High-Entropy AlxCoCuNiTi Alloys
    Z. Wang
    J. Zhou
    M. Ma
    L. Zhao
    Metal Science and Heat Treatment, 2021, 63 : 297 - 303
  • [38] Microstructure and mechanical properties of CrFeNiBx eutectic high entropy alloys
    Lei, Haofeng
    Ye, Xicong
    Feng, Jiaxing
    Chen, Junchao
    Diao, Zhongheng
    Fang, Dong
    Li, Bo
    Zhao, Guangwei
    Liu, Renci
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 887
  • [39] Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys
    Xi-cong Ye
    Tong Wang
    Zhang-yang Xu
    Chang Liu
    Hai-hua Wu
    Guang-wei Zhao
    Dong Fang
    International Journal of Minerals, Metallurgy and Materials, 2020, 27 : 1326 - 1331
  • [40] Effects of Al addition on the microstructure and mechanical properties of AlxCoCrFeNi2.1 high-entropy alloys
    Gan Y.
    Duan S.
    Mo Y.
    Dong Y.
    Yi J.
    Hu Y.
    Intermetallics, 2024, 166