On sequences of homoclinic solutions for fractional discrete p-Laplacian equations

被引:4
|
作者
Ju, Chunming [1 ]
Bisci, Giovanni Molica [2 ]
Zhang, Binlin [1 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, I-61029 Urbino, Italy
[3] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Peoples R China
来源
COMMUNICATIONS IN ANALYSIS AND MECHANICS | 2023年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
discrete fractional p-Laplacian; homoclinic solutions; Ricceri's variational principle; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.3934/cam.2023029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following discrete fractional p-Laplacian equations:(-Delta 1)spu(a) + V(a)|u(a)|p-2u(a) = lambda f (a, u(a)), in Z,where lambda is the parameter and f (a, u(a)) satisfies no symmetry assumption. As a result, a specific positive parameter interval is determined by some requirements for the nonlinear term near zero, and then infinitely many homoclinic solutions are obtained by using a special version of Ricceri's variational principle.
引用
收藏
页码:586 / 597
页数:12
相关论文
共 50 条