On sequences of homoclinic solutions for fractional discrete p-Laplacian equations

被引:4
|
作者
Ju, Chunming [1 ]
Bisci, Giovanni Molica [2 ]
Zhang, Binlin [1 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, I-61029 Urbino, Italy
[3] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Peoples R China
来源
COMMUNICATIONS IN ANALYSIS AND MECHANICS | 2023年 / 15卷 / 04期
基金
中国国家自然科学基金;
关键词
discrete fractional p-Laplacian; homoclinic solutions; Ricceri's variational principle; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.3934/cam.2023029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following discrete fractional p-Laplacian equations:(-Delta 1)spu(a) + V(a)|u(a)|p-2u(a) = lambda f (a, u(a)), in Z,where lambda is the parameter and f (a, u(a)) satisfies no symmetry assumption. As a result, a specific positive parameter interval is determined by some requirements for the nonlinear term near zero, and then infinitely many homoclinic solutions are obtained by using a special version of Ricceri's variational principle.
引用
收藏
页码:586 / 597
页数:12
相关论文
共 50 条
  • [1] The Existence and Multiplicity of Homoclinic Solutions for a Fractional Discrete p-Laplacian Equation
    Wu, Yong
    Tahar, Bouali
    Rafik, Guefaifia
    Rahmoune, Abita
    Yang, Libo
    MATHEMATICS, 2022, 10 (09)
  • [2] Homoclinic solutions for fractional discrete Laplacian equations
    Xiang, Mingqi
    Zhang, Binlin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [3] Homoclinic solutions of discrete p-Laplacian equations containing both advance and retardation
    Mei, Peng
    Zhou, Zhan
    Chen, Yuming
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (06): : 2205 - 2219
  • [4] Homoclinic solutions for discrete fractional p-Laplacian equation via the Nehari manifold method
    Bouabdallah, Mohamed
    El Ahmadi, Mahmoud
    Lamaizi, Anass
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 3359 - 3375
  • [5] Homoclinic solutions for second order discrete p-Laplacian systems
    Xiaofei He
    Peng Chen
    Advances in Difference Equations, 2011
  • [6] Homoclinic solutions for second order discrete p-Laplacian systems
    He, Xiaofei
    Chen, Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2011, : 1 - 16
  • [7] Existence of solutions for p-Laplacian discrete equations
    Bisci, Giovanni Molica
    Repovs, Dusan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 454 - 461
  • [8] POSITIVE HOMOCLINIC SOLUTIONS FOR THE DISCRETE p-LAPLACIAN WITH A COERCIVE WEIGHT FUNCTION
    Iannizzotto, Antonio
    Radulescu, Vicentiu D.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (1-2) : 35 - 44
  • [9] Positive Solutions of Fractional Differential Equations with p-Laplacian
    Tian, Yuansheng
    Sun, Sujing
    Bai, Zhanbing
    JOURNAL OF FUNCTION SPACES, 2017, 2017
  • [10] Multiple solutions for superlinear fractional p-Laplacian equations
    Antonio Iannizzotto
    Vasile Staicu
    Vincenzo Vespri
    Partial Differential Equations and Applications, 2025, 6 (2):