A Robust and Low Complexity Deep Learning Model for Remote Sensing Image Classification

被引:1
作者
Le, Cam [1 ,2 ]
Pham, Lam [4 ]
Nvn, Nghia [5 ]
Nguyen, Truong [2 ,3 ]
Trang, Le Hong [1 ,2 ]
机构
[1] HCMC Univ Technol, Fac Comp Sci & Engn, 268 Ly Thuong Kiet,Dist 10, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ Ho Chi Minh City VNU HCM, Linh Trung Ward, Ho Chi Minh City, Vietnam
[3] HCMC Univ Technol HCMUT, Fac Elect & Elect Engn, 268 Ly Thuong Kiet,Dist 10, Ho Chi Minh City, Vietnam
[4] Austrian Inst Technol, Seibersdorf, Austria
[5] Pintel Ltd, Seoul, South Korea
来源
PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2023 | 2023年
关键词
Deep learning; convolutional neural network (CNN); remote sensing image classification (RSIC); data augmentation; model complexity; CONVOLUTIONAL NEURAL-NETWORKS; SCENE CLASSIFICATION; ATTENTION; LIGHTWEIGHT;
D O I
10.1145/3591569.3591601
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a robust and low complexity deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the scene of a remote sensing image. In particular, we firstly evaluate different low complexity and benchmark deep neural networks: MobileNetV1, MobileNetV2, NASNetMobile, and EfficientNetB0, which present a number of trainable parameters lower than 5 Million (M) or occupy 20 MB memory. After indicating the best network architecture, we further improve the network performance by applying attention schemes to multiple feature maps extracted from middle layers of the network. To deal with the issue of increasing the model footprint due to using attention schemes, we apply the quantization technique to satisfy the maximum memory occupation of 20 MB. By conducting extensive experiments on the benchmark datasets NWPU-RESISC45, we achieve a robust and low-complexity model, which is very competitive to the state-of-the-art systems and potential for real-life applications on edge devices.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 62 条
[1]   DeepSat - A Learning framework for Satellite Imagery [J].
Basu, Saikat ;
Ganguly, Sangram ;
Mukhopadhyay, Supratik ;
DiBiano, Robert ;
Karki, Manohar ;
Nemani, Ramakrishna .
23RD ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2015), 2015,
[2]   Simple Yet Effective Fine-Tuning of Deep CNNs Using an Auxiliary Classification Loss for Remote Sensing Scene Classification [J].
Bazi, Yakoub ;
Al Rahhal, Mohamad M. ;
Alhichri, Haikel ;
Alajlan, Naif .
REMOTE SENSING, 2019, 11 (24)
[3]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[4]   Multi-class geospatial object detection and geographic image classification based on collection of part detectors [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Guo, Lei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 :119-132
[5]  
Chollet F., 2015, Keras
[6]   Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis [J].
de Lima, Rafael Pires ;
Marfurt, Kurt .
REMOTE SENSING, 2020, 12 (01)
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Multiple Classifier System for Remote Sensing Image Classification: A Review [J].
Du, Peijun ;
Xia, Junshi ;
Zhang, Wei ;
Tan, Kun ;
Liu, Yi ;
Liu, Sicong .
SENSORS, 2012, 12 (04) :4764-4792
[9]  
Elmannai H, 2016, 2016 INTERNATIONAL SYMPOSIUM ON SIGNAL, IMAGE, VIDEO AND COMMUNICATIONS (ISIVC), P137, DOI 10.1109/ISIVC.2016.7893976
[10]  
Elmannai Hela, 2013, P ENG TECHN, V2, P68