Geometry and Global Stability of 2D Periodic Monotone Maps

被引:3
作者
Balreira, E. Cabral [1 ]
Luis, Rafael [2 ]
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[2] Univ Tecn Lisboa, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, Lisbon, Portugal
关键词
Competition models; Global stability; Kolmogorov maps; Monotone maps; 2D Periodic maps; DIFFERENCE-EQUATIONS; CARRYING SIMPLEX; UNIQUENESS; EXISTENCE; DYNAMICS;
D O I
10.1007/s10884-021-10089-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish conditions to ensure global stability of a competitive periodic system from hypotheses on individual maps. We study planar competitive maps of Kolgomorov type. We show how conditions for global stability for individual maps will remain invariant under composition and hence establish a globally stable cycle. Our main theoretical contribution is to show that stability for monotone non-autonomous periodic maps can be reduced to a problem of global injectivity. We provide analytic conditions that can be checked and illustrate our results with important competition models such as the planar Leslie-Gower and Ricker maps.
引用
收藏
页码:2185 / 2198
页数:14
相关论文
共 22 条
[1]   LOCAL STABILITY IMPLIES GLOBAL STABILITY FOR THE PLANAR RICKER COMPETITION MODEL [J].
Balera, E. Cabral ;
Elaydi, Saber ;
Luis, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02) :323-351
[2]   Global stability of higher dimensional monotone maps [J].
Balreira, E. Cabral ;
Elaydi, Saber ;
Luis, Rafael .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (12) :2037-2071
[3]   Foliations and global inversion [J].
Balreira, Eduardo Cabral .
COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (01) :73-93
[4]   PERIODIC-SOLUTIONS TO NONAUTONOMOUS DIFFERENCE-EQUATIONS [J].
CLARK, ME ;
GROSS, LJ .
MATHEMATICAL BIOSCIENCES, 1990, 102 (01) :105-119
[5]  
Cushing JM, 2001, J DIFFER EQU APPL, V7, P859
[6]   Periodic difference equations, population biology and the Cushing-Henson conjectures [J].
Elaydi, S ;
Sacker, RJ .
MATHEMATICAL BIOSCIENCES, 2006, 201 (1-2) :195-207
[7]   Global stability of periodic orbits of non-autonomous difference equations and population biology [J].
Elaydi, S ;
Sacker, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (01) :258-273
[8]  
Elaydi S., 2005, P 2 ANN CEL MATH UN
[9]  
Gale D., 1965, MATH ANN, V159, P81, DOI [10.1007/bf01360282, DOI 10.1007/BF01360282]
[10]  
GUTIERREZ C, 1995, ANN I H POINCARE-AN, V12, P627