Bayesian inference from gravitational waves in fast-rotating, core-collapse supernovae

被引:3
作者
Pastor-Marcos, Carlos [1 ,2 ]
Cerda-Duran, Pablo [1 ,3 ]
Walker, Daniel [4 ]
Torres-Forne, Alejandro [1 ,3 ]
Abdikamalov, Ernazar [5 ,6 ]
Richers, Sherwood [7 ]
Font, Jose A. [1 ,3 ]
机构
[1] Univ Valencia, Dept Astron & Astrofis, Dr Moliner 50, Burjassot 46100, Valencia, Spain
[2] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[3] Univ Valencia, Observ Astron, Catedrat Jose Beltran 2, Paterna 46980, Spain
[4] Imperial Coll London, Dept Phys, Blackett Lab, London SW7 2AZ, England
[5] Nazarbayev Univ, Sch Sci & Humanities, Dept Phys, Astana 010000, Kazakhstan
[6] Nazarbayev Univ, Energet Cosmos Lab, Astana 010000, Kazakhstan
[7] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
基金
欧盟地平线“2020”;
关键词
POSSIBLE GRB PROGENITORS; NEWTONIAN HYDRODYNAMICS; SIMULATIONS; INSTABILITY; SIGNATURE; DYNAMICS; STARS; CODE;
D O I
10.1103/PhysRevD.109.063028
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Core -collapse supernovae (CCSNe) are prime candidates for gravitational -wave detectors. The analysis of their complex waveforms can potentially provide information on the physical processes operating during the collapse of the iron cores of massive stars. In this work we analyze the early -bounce rapidly rotating CCSN signals reported in the waveform catalog of Richers et al. 2017. This catalog comprises over 1800 axisymmetric simulations extending up to about 10 ms of postbounce evolution. It was previously established that for a large range of progenitors, the amplitude of the bounce signal, D center dot Delta h, is proportional to the ratio of rotational -kinetic energy to potential energy, T/jWj, and the peak frequency, fpeak, is proportional to the square root of the central rest -mass density, p ffiffiffiffi. In this work, we exploit these relations rho c to suggest that it could be possible to use such waveforms to infer protoneutron star properties from a future gravitational wave observation, but only if the distance and inclination are well known and the rotation rate is sufficiently low. Our approach relies on the ability to describe a subset of the waveforms in the early postbounce phase in a simple form-a master waveform template-depending only on two parameters, D center dot Delta h and fpeak. We use this template to perform a Bayesian inference analysis of waveform injections in Gaussian colored noise for a network of three gravitational wave detectors formed by Advanced LIGO and Advanced Virgo. We show that, for a Galactic event (D similar to 10 kpc), it is possible to recover the peak frequency and amplitude with an accuracy better than 10% for similar to 80% and similar to 60% of the signals, respectively, given known distance and inclination angle. However, inference on waveforms from outside the Richers catalog is not reliable, indicating a need for carefully verified waveforms of the first 10 ms after bounce of rapidly rotating supernovae of different progenitors with agreement between different codes.
引用
收藏
页数:22
相关论文
共 81 条
[1]   The IceCube Neutrino Observatory: instrumentation and online systems [J].
Aartsen, M. G. ;
Ackermann, M. ;
Adams, J. ;
Aguilar, J. A. ;
Ahlers, M. ;
Ahrens, M. ;
Altmann, D. ;
Andeen, K. ;
Anderson, T. ;
Ansseau, I. ;
Anton, G. ;
Archinger, M. ;
Arguelles, C. ;
Auer, R. ;
Auffenberg, J. ;
Axani, S. ;
Baccus, J. ;
Bai, X. ;
Barnet, S. ;
Barwick, S. W. ;
Baum, V. ;
Bay, R. ;
Beattie, K. ;
Beatty, J. J. ;
Tjus, J. Becker ;
Becker, K. -H. ;
Bendfelt, T. ;
BenZvi, S. ;
Berley, D. ;
Bernardini, E. ;
Bernhard, A. ;
Besson, D. Z. ;
Binder, G. ;
Bindig, D. ;
Bissok, M. ;
Blaufuss, E. ;
Blot, S. ;
Boersma, D. ;
Bohm, C. ;
Boerner, M. ;
Bos, F. ;
Bose, D. ;
Boeser, S. ;
Botner, O. ;
Bouchta, A. ;
Braun, J. ;
Brayeur, L. ;
Bretz, H. -P. ;
Bron, S. ;
Burgman, A. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[2]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[3]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Appert, S. ;
Arai, K. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Asada, H. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atsuta, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Avila-Alvarez, A. ;
Awai, K. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baiotti, L. .
LIVING REVIEWS IN RELATIVITY, 2018, 21
[4]   Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aso, Y. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V. .
LIVING REVIEWS IN RELATIVITY, 2020, 23 (01)
[5]   Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baird, J. .
PHYSICAL REVIEW D, 2020, 101 (08)
[6]  
Abdikamalov E., 2021, Handbook of Gravitational Wave Astronomy, P1
[7]   Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves [J].
Abdikamalov, Ernazar ;
Gossan, Sarah ;
DeMaio, Alexandra M. ;
Ott, Christian D. .
PHYSICAL REVIEW D, 2014, 90 (04)
[8]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[9]   Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network [J].
Ackley, K. ;
Adya, V. B. ;
Agrawal, P. ;
Altin, P. ;
Ashton, G. ;
Bailes, M. ;
Baltinas, E. ;
Barbuio, A. ;
Beniwal, D. ;
Blair, C. ;
Blair, D. ;
Bolingbroke, G. N. ;
Bossilkov, V ;
Boublil, S. Shachar ;
Brown, D. D. ;
Burridge, B. J. ;
Bustillo, J. Calderon ;
Cameron, J. ;
Cao, H. Tuong ;
Carlin, J. B. ;
Chang, S. ;
Charlton, P. ;
Chatterjee, C. ;
Chattopadhyay, D. ;
Chen, X. ;
Chi, J. ;
Chow, J. ;
Chu, Q. ;
Ciobanu, A. ;
Clarke, T. ;
Clearwater, P. ;
Cooke, J. ;
Coward, D. ;
Crisp, H. ;
Dattatri, R. J. ;
Deller, A. T. ;
Dobie, D. A. ;
Dunn, L. ;
Easter, P. J. ;
Eichholz, J. ;
Evans, R. ;
Flynn, C. ;
Foran, G. ;
Forsyth, P. ;
Gai, Y. ;
Galaudage, S. ;
Galloway, D. K. ;
Gendre, B. ;
Goncharov, B. ;
Goode, S. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2020, 37
[10]   Inferring physical properties of stellar collapse by third-generation gravitational-wave detectors [J].
Afle, Chaitanya ;
Brown, Duncan A. .
PHYSICAL REVIEW D, 2021, 103 (02)