Fekete-Szego Functional of a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials

被引:8
作者
Al-Rawashdeh, Waleed [1 ]
机构
[1] Zarqa Univ, Fac Sci, Dept Math, Zarqa 13110, Jordan
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 01期
关键词
Analytic Functions; Taylor-Maclaurin Series; Univalent and Bi- Univalent Functions; Principle of Subordination; Hadamard Product; Ruscheweyh Operator; Ruscheweyh Derivative; Gegenbauer Polynomials; Chebyshev polynomials; Coefficient estimates; Fekete-Szego center dot Inequality; COEFFICIENT;
D O I
10.29020/nybg.ejpam.v17i1.5004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and investigate a class of bi-univalent functions, denoted by F(n, alpha, beta), that depends on the Ruscheweyh operator and defined by the use of Gegenbauer Polynomials. For functions in this class, we derive the estimations for the initial Taylor -Maclaurin coefficients |a(2)| and |a(3)|. Moreover, we obtain the classical Fekete-Szego inequality of functions belonging to this class.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 27 条
[1]  
Abdullah K. I., 2022, Science Journal of University of Zakho, V10, P66
[2]  
Al-Rawashdeh W., Preprints
[3]  
Al-Rawashdeh W, 2024, INT J MATH COMPUT SC, V19, P635
[4]   Horadam Polynomials and a Class of Biunivalent Functions Defined by Ruscheweyh Operator [J].
Al-Rawashdeh, Waleed .
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2023, 2023
[5]   Fekete-Szego Problem for a Subclass of Analytic Functions Associated with Chebyshev Polynomials [J].
Caglar, Murat ;
Orhan, Halit ;
Kamali, Muhammet .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[6]   Multi-dimensional Chebyshev polynomials: a non-conventional approach [J].
Cesarano, Clemente .
COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2019, 10 (01) :1-19
[7]  
Cesarano C, 2015, HACET J MATH STAT, V44, P535
[8]   Identities and generating functions on Chebyshev polynomials [J].
Cesarano, Clemente .
GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (03) :427-440
[9]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[10]  
Deniz E., 2012, Turkish J. Math., V45