Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation

被引:2
作者
Zhou, Qin [1 ,2 ]
Li, Binjie [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] China West Normal Univ, Sch Math, Nanchong 637002, Peoples R China
基金
中国国家自然科学基金;
关键词
Neumann boundary control; stochastic parabolic equation; Q-Wiener process; boundary noise; discretization; convergence; MAXIMUM PRINCIPLE; NOISE; DISCRETIZATION; APPROXIMATION; SIMULATION;
D O I
10.1007/s11425-021-2027-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes the discretization of a Neumann boundary control problem with a stochastic parabolic equation, where an additive noise occurs in the Neumann boundary condition. The convergence is established for general filtration, and the convergence rate O(tau(1/4-epsilon)+h(1/2-epsilon)) is derived for the natural filtration of the Q-Wiener process.
引用
收藏
页码:2133 / 2156
页数:24
相关论文
共 37 条
[1]   A forward scheme for backward SDEs [J].
Bender, Christian ;
Denk, Robert .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (12) :1793-1812
[2]   STOCHASTIC MAXIMUM PRINCIPLE FOR DISTRIBUTED PARAMETER-SYSTEMS [J].
BENSOUSSAN, A .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1983, 315 (5-6) :387-406
[3]   Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations [J].
Bouchard, B ;
Touzi, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :175-206
[4]  
Brenner SC, 2008, The mathematical theory of finite element methods, V3rd, DOI DOI 10.1007/978-0-387-75934-0
[5]   Error analysis of finite element approximations of the optimal control problem for stochastic Stokes equations with additive white noise [J].
Choi, Youngmi ;
Lee, Hyung-Chun .
APPLIED NUMERICAL MATHEMATICS, 2018, 133 :144-160
[6]  
Da Prato G., 1993, Stoch. Int. J. Probab. Stoch. Process, V42, P167, DOI DOI 10.1080/17442509308833817
[7]  
Da Prato G., 2014, Stochastic equations in infinite dimensions, DOI DOI 10.1017/CBO9781107295513
[8]   Optimal control of a stochastic heat equation with boundary-noise and boundary-control [J].
Debussche, Arnaud ;
Fuhrman, Marco ;
Tessitore, Gianmario .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (01) :178-205
[9]   A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL OF STOCHASTIC EVOLUTION EQUATIONS [J].
Du, Kai ;
Meng, Qingxin .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (06) :4343-4362
[10]   The forward-backward stochastic heat equation: Numerical analysis and simulation [J].
Dunst T. ;
Prohl A. .
SIAM Journal on Scientific Computing, 2016, 38 (05) :A2725-A2755