One-step method synthesis of cobalt-doped GeZn1.7ON1.8 particle for enhanced lithium-ion storage performance

被引:12
作者
Gao, Kesheng [1 ]
Miao, Zeqing [1 ]
Han, Ying [3 ]
Li, Dazhi [2 ]
Sun, Wei [2 ]
Zhang, Meng [2 ]
Meng, Alan [3 ]
Sun, Changlong [1 ,2 ]
Li, Zhenjiang [1 ,2 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Qingdao 266061, Shandong, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Shandong, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
GeZn1; 7ON1; 8; Co doping; Ex-situ analysis; Lithium-ion battery; OXIDE-ASSISTED SYNTHESIS; ANODE MATERIAL; NANOSHEETS; GRAPHENE; NANOPARTICLES; NITRIDE; MOS2;
D O I
10.1016/j.electacta.2023.141876
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The exploration of alternative anode materials to obtain the satisfactory lithium-ion storage performance is crucial for next-generation energy storage devices. Herein, the rational design of a completely new anode ma-terial is reported by a simple solid state reaction method, which follows an insertion-type lithiation mechanism, cobalt-doped GeZn1.7ON1.8 (Co-GeZn1.7ON1.8). The introduced cobalt increases the achievable capacity by more than 100%, originating from the additional space for the lithium-ion insertion. The Co-GeZn1.7ON1.8 particle anode delivered high capacity (861.4 mAh g-1 at 0.1 A g-1 after 200 cycles) and ultralong cycling stability (2000 cycles at 1.0 A g-1 with a maintained capacity of 435 mAh g-1), which represents outstanding comprehensive electrochemical performance. Electrochemical kinetic results confirms the existence of the pseudocapacitive and the reduced lithium-ion diffusion barrier in the Co-GeZn1.7ON1.8 particle anode. Furthermore, ex-situ XRD and XPS analyses corroborate the reversible intercalation electrochemical reaction mechanism of the Co-GeZ-n1.7ON1.8 anode. This study offers a new vision toward designing high-performance quaternary metallic oxynitrides-based materials for large-scale energy storage applications.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Nanoporous carbon oxynitride and its enhanced lithium-ion storage performance [J].
Cha, Wangsoo ;
Kim, Sungho ;
Selvarajan, Premkumar ;
Lee, Jang Mee ;
Davidraj, Jefrin Marykala ;
Joseph, Stalin ;
Ramadass, Kavitha ;
Kim, In Young ;
Vinu, Ajayan .
NANO ENERGY, 2021, 82
[2]   Unlocking robust lithium storage performance in High 1T-phase purity MoS2 constructed by Mg intercalation [J].
Chen, Fuzhou ;
Sun, Changlong ;
Robertson, Stuart Jacob ;
Chen, Shengzhen ;
Zhu, Yihan ;
Shao, Minhua ;
Wang, Jiahai .
NANO ENERGY, 2022, 104
[3]   A perspective on sustainable energy materials for lithium batteries [J].
Cheng, Xin-Bing ;
Liu, He ;
Yuan, Hong ;
Peng, Hong-Jie ;
Tang, Cheng ;
Huang, Jia-Qi ;
Zhang, Qiang .
SUSMAT, 2021, 1 (01) :38-50
[4]   3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li-S Batteries [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Hou, Pengxiang ;
Cheng, Min ;
Wang, Shaogang ;
Cheng, Hui-Ming ;
Liu, Chang ;
Li, Feng .
ADVANCED MATERIALS, 2016, 28 (17) :3374-3382
[5]   Electrochemical transformation reaction of Cu-MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life [J].
Fenta, Fekadu Wubatu ;
Olbasa, Bizualem Wakuma ;
Tsai, Meng-Che ;
Weret, Misganaw Adigo ;
Zegeye, Tilahun Awoke ;
Huang, Chen-Jui ;
Huang, Wei-Hsiang ;
Zeleke, Tamene Simachew ;
Sahalie, Niguse Aweke ;
Pao, Chih-Wen ;
Wu, She-huang ;
Su, Wei-Nien ;
Dai, Hongjie ;
Hwang, Bing Joe .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (34) :17595-17607
[6]   Effect of Cobalt Doping on Structural, Optical, and Magnetic Properties of ZnO Nanoparticles Synthesized by Coprecipitation Method [J].
Gandhi, Vijayaprasath ;
Ganesan, Ravi ;
Hameed, Abdulrahman Syedahamed Haja ;
Thaiyan, Mahalingam .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (18) :9715-9725
[7]   Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage [J].
Han, Ying ;
Sun, Changlong ;
Gao, Kesheng ;
Ding, Shiqi ;
Miao, Zeqing ;
Zhao, Jian ;
Yang, Zijiang ;
Wu, Peng ;
Huang, Jing ;
Li, Zhenjiang ;
Meng, Alan ;
Zhang, Lei ;
Chen, P. .
ELECTROCHIMICA ACTA, 2022, 408
[8]   Synthesis of Mesoporous Co2+-Doped TiO2 Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance [J].
Hong, Zhensheng ;
Kang, Meiling ;
Chen, Xiaohui ;
Zhou, Kaiqiang ;
Huang, Zhigao ;
Wei, Mingdeng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) :32071-32079
[9]   Strongly electrophilic heteroatoms confined in atomic CoOOH nanosheets realizing efficient electrocatalytic water oxidation [J].
Huang, Yuanyuan ;
Zhao, Xu ;
Tang, Fumin ;
Zheng, Xusheng ;
Cheng, Weiren ;
Che, Wei ;
Hu, Fengchun ;
Jiang, Yong ;
Liu, Qinghua ;
Wei, Shiqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (07) :3202-3210
[10]   A nanocrystalline nitride as an insertion anode for Li-ion batteries [J].
Kundu, Dipan ;
Krumeich, Frank ;
Fotedar, Rahul ;
Nesper, Reinhard .
JOURNAL OF POWER SOURCES, 2015, 278 :608-613