Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations

被引:14
作者
Chu, Jifeng [1 ]
Meng, Gang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Primary; 34L15; 34L40; 76B15; MEASURE DIFFERENTIAL-EQUATIONS; INVERSE SPECTRAL PROBLEM; SHALLOW-WATER EQUATION; 1ST; EIGENVALUES; CONTINUOUS DEPENDENCE; ISOSPECTRAL PROBLEM; POTENTIALS; OPERATORS; NUMBER;
D O I
10.1007/s00208-022-02556-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a short proof of the maximization of Dirichlet eigenvalue ratios for the Camassa-Holm equation y " = 1/4 y + lambda m(x)y, by solving the infinitely dimensional maximization problem R-k(r, B) = sup(m is an element of E(r,B)) lambda(2k)(m)/lambda(1)(m) , k is an element of N, when the potentials satisfy that ||m||(1) <= r and m(x) <= -B for some constants r > 0 and B is an element of (0, r]. The maximization will be given as an elementary function. Our results shed new lights on such kind of problems because we do not require the potentials to be symmetric or monotone. Because the solution of the maximization problem leads to more general distributions of potentials which have no densities with respect to the Lebesgue measure, we choose the general setting of the measure differential equations dy(center dot) = 1/4 ydx + yd mu(x), to understand such problems.
引用
收藏
页码:1205 / 1224
页数:20
相关论文
共 56 条
[31]   On the isospectral problem of the dispersionless Camassa-Holm equation [J].
Eckhardt, Jonathan ;
Teschl, Gerald .
ADVANCES IN MATHEMATICS, 2013, 235 :469-495
[32]  
FLEIGE A., 1996, Math. Res., V98
[33]  
Gohberg, 1970, AM MATH SOC TRANSL, V24
[34]   Optimal maximal gaps of Dirichlet eigenvalues of Sturm-Liouville operators [J].
Guo, Shuyuan ;
Meng, Gang ;
Yan, Ping ;
Zhang, Meirong .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)
[35]   On the first two eigenvalues of Sturm-Liouville operators [J].
Horváth, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1215-1224
[36]   On the eigenvalue ratio for vibrating strings [J].
Huang, MJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) :1805-1813
[37]   Estimates of the first Dirichlet eigenvalue from exit time moment spectra [J].
Hurtado, A. ;
Markvorsen, S. ;
Palmer, V. .
MATHEMATISCHE ANNALEN, 2016, 365 (3-4) :1603-1632
[38]  
KAC IS, 1974, AM MATH SOC T 2, V103, P19, DOI DOI 10.1090/TRANS2/103
[39]   Sharp estimates for the eigenvalues of some differential equations [J].
Karaa, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (05) :1279-1300
[40]  
Krein M.G., 1955, AMS Translations Ser, V2, P163, DOI [10.1090/trans2/001, DOI 10.1090/TRANS2/001]