Automorphism groups of bipartite Kneser type-k graphs

被引:3
作者
Sreekumar, K. G. [1 ]
Ramesh Kumar, P. [1 ]
Manilal, K. [2 ]
机构
[1] Univ Kerala, Dept Math, Thiruvananthapuram, Kerala, India
[2] Univ Coll, Dept Math, Thiruvananthapuram, Kerala, India
关键词
Bipartite Kneser graphs; bipartite Kneser type-k graph; automorphism group; symmetric group; peripheral Hosoya polynomial;
D O I
10.1142/S179355712350047X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For integers n > 1, k >= 1, let I-n = {1, 2, 3, ..., n}. Let phi(I-n) be the set of all non-empty subsets of I-n. Let V-1 be the set of k-element subsets of I-n, and V-2 = phi(I-n) - V-1. A bipartite Kneser type-k graph H-T(n, k) is defined with parts V-1 and V-2, and a vertex A is an element of V-1 is adjacent to a vertex B is an element of V-2 if and only if A subset of B or B subset of A. The algebraic properties of bipartite Kneser type-k graphs are investigated. For any integers n >= 3, the automorphism groups of bipartite Kneser type-1 graphs are isomorphic to the symmetric group S-n. The bipartite Kneser type-1 graph's Wiener index, peripheral Wiener index, and peripheral Hosoya polynomial were established. For integers n and k, n > 2 and 2k < n or 2k > n, 1 <= k < n, the automorphism group of H-T(n, k) is isomorphic to the symmetric group S-n. For n is even and 2k = n, the automorphism group of H-T(n, k) is isomorphic to S-n x Z(2), where Z(2) is the cyclic group of order 2.
引用
收藏
页数:14
相关论文
共 15 条
[1]  
Ashrafi AR, 2017, ELECTRON J GRAPH THE, V5, P70, DOI 10.5614/ejgta.2017.5.1.8
[2]   Graph products and eccentric harmonic index [J].
Azari, Mahdieh .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (02)
[3]  
Babai L, 2006, DISCRETE MATH, V306, P918, DOI 10.1016/j.disc.2006.03.012
[4]  
Bamberg J., 2022, ARXIV
[5]  
Beeler, 2018, AUTOMORPHISM GROUP S
[6]  
Chaouche F. A., 2006, ELECT NOTES DISCRETE, V24, P9, DOI https://doi.org/10.1016/j.endm.2006.06.003
[7]   LDPC Code Construction from Bipartite Kneser Graphs [J].
Chowdhury, Tamal ;
Pramanik, Ankita .
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, DEVICES AND COMPUTING, 2020, 602 :1-12
[8]   The second-minimum Wiener index of cacti with given cycles [J].
Deng, Hanyuan ;
Keerthi Vasan, G. C. ;
Balachandran, S. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (03)
[9]   THE AUTOMORPHISM GROUP OF FINITE GRAPHS [J].
Fath-Tabar, G. H. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2007, 2 (02) :29-33
[10]   On the peripheral Wiener index of graphs [J].
Hua, Hongbo .
DISCRETE APPLIED MATHEMATICS, 2019, 258 :135-142