Rapid Design of Fully Soft Deployable Structures Via Kirigami Cuts and Active Learning

被引:3
作者
Ma, Leixin [1 ,2 ]
Mungekar, Mrunmayi [1 ]
Roychowdhury, Vwani [3 ]
Jawed, M. K. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[3] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
active learning; form-finding; kirigami; mechanical instability; shell buckling; ELASTICITY; COMPLEX;
D O I
10.1002/admt.202301305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Soft deployable structures - unlike conventional piecewise rigid deployables based on hinges and springs - can assume intricate 3-D shapes, thereby enabling transformative soft robotic and manufacturing technologies. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse problem: fabrication of desired 3D structures requires manufacturing technologies with extensive local actuation and control, and a trial-and-error search over a large design space. Both of these shortcomings are addressed by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3-D shapes by designing the appropriate kirigami cuts and the amount of prestretch (without any local control). Second, a data-driven physics-guided framework is formulated that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the "latent" parameter space in an active learning approach. The rapid design procedure is demonstrated via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Experiments and our numerical predictions are found to be in good agreement. Soft deployable structures revolutionize robotics and manufacturing by assuming intricate 3-D shapes, challenging conventional rigid deployables. Overcoming fabrication hurdles, the approach employs a planar method with strain mismatches and kirigami cuts for precise shape control. Additionally, a data-driven physics-guided framework, utilizing autoencoders, streamlines the inverse design problem. Demonstrated through various shapes, the rapid design procedure aligns experiments with numerical predictions.image
引用
收藏
页数:14
相关论文
共 44 条
[1]   A multi-physics approach for modeling hygroscopic behavior in wood low-teck architectural adaptive systems [J].
Abdelmohsen, Sherif ;
Adriaenssens, Sigrid ;
El-Dabaa, Rana ;
Gabriele, Stefano ;
Olivieri, Luigi ;
Teresi, Luciano .
COMPUTER-AIDED DESIGN, 2019, 106 :43-53
[2]  
Ahmed E., 2018, ARXIV PREPRINT ARXIV, DOI DOI 10.48550/ARXIV.1808.01462
[3]   Form finding in elastic gridshells [J].
Baek, Changyeob ;
Sageman-Furnas, Andrew O. ;
Jawed, Mohammad K. ;
Reis, Pedro M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (01) :75-80
[4]   Shape-shifting structured lattices via multimaterial 4D printing [J].
Boley, J. William ;
van Rees, Wim M. ;
Lissandrello, Charles ;
Horenstein, Mark N. ;
Truby, Ryan L. ;
Kotikian, Arda ;
Lewis, Jennifer A. ;
Mahadevan, L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (42) :20856-20862
[5]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[6]   Programming shape using kirigami tessellations [J].
Choi, Gary P. T. ;
Dudte, Levi H. ;
Mahadevan, L. .
NATURE MATERIALS, 2019, 18 (09) :999-+
[7]   Inverse design of deployable origami structures that approximate a general surface [J].
Dang, Xiangxin ;
Feng, Fan ;
Plucinsky, Paul ;
James, Richard D. ;
Duan, Huiling ;
Wang, Jianxiang .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 234
[8]   Design subspace learning: Structural design space exploration using performance-conditioned generative modeling [J].
Danhaive, Renaud ;
Mueller, Caitlin T. .
AUTOMATION IN CONSTRUCTION, 2021, 127 (127)
[9]   Kirigami actuators [J].
Dias, Marcelo A. ;
McCarron, Michael P. ;
Rayneau-Kirkhope, Daniel ;
Hanakata, Paul Z. ;
Campbell, David K. ;
Park, Harold S. ;
Holmes, Douglas P. .
SOFT MATTER, 2017, 13 (48) :9087-9092
[10]   Inverse Design Strategies for 3D Surfaces Formed by Mechanically Guided Assembly [J].
Fan, Zhichao ;
Yang, Yiyuan ;
Zhang, Fan ;
Xu, Zheng ;
Zhao, Hangbo ;
Wang, Taoyi ;
Song, Honglie ;
Huang, Yonggang ;
Rogers, John A. ;
Zhang, Yihui .
ADVANCED MATERIALS, 2020, 32 (14)