An improved Caledonian crow learning algorithm based on ring topology for security-aware workflow scheduling in cloud computing

被引:1
|
作者
Zade, B. Mohammad Hasani [1 ]
Javidi, M. M. [1 ]
Mansouri, N. [1 ]
机构
[1] Shahid Bahonar Univ Kerman, Dept Comp Sci, Box, Kerman 76135133, Iran
关键词
Cloud computing; Workflow scheduling; Security; Meta-heuristic; Ring topology; MULTIOBJECTIVE OPTIMIZATION;
D O I
10.1007/s12083-023-01541-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The security of workflow scheduling is a significant concern and even is one of the most important metrics of QoS (Quality of Service). This paper presents two approaches to provide a secure connection between users and servers and handle large and medium task size problems. Firstly, a multi-objective scheduling (MO-Ring-IC-NCCLA) algorithm for scientific workflow in the cloud environment is proposed. It tries to minimize workflow makespan and cost as well as increase the cost of attack from an invader. The proposed multi-objective is based on the New Caledonian Crow Learning Algorithm (NCCLA). However, this algorithm has a few drawbacks, including poor exploration activity and inability to balance exploration and exploitation. The social and asocial learning part of standard NCCLA has been modified to tackle these limitations, then a concept of ring topology is used to better Pareto optimal can be found. Secondly, the structure of virtual machines is modified so that the cost of attack from invaders increases. Experimental results based on various real-world workflows indicate the performance improvement of MO-Ring-IC-NCCLA over SBDE, NSGA-II, and MOHFHB algorithms in terms of FS-metric. According to the delta metric (i.e., diversity measures), the proposed algorithm is superior to 85% of the compared metaheuristics. In terms of Inverted Generational Distance (IGD) metric, it outperforms NSGAII and Multi-Objective Artificial Hummingbird Algorithm (MOAHA) for 95% and 80% of the cases, respectively. Based on experiments, makespan and cost improved by 23.12% and 18.43% over existing workflow algorithms. Compared to Multi-Objective Hybrid Fuzzy Hitchcock Bird (MOHFHB), Simulated-annealing Based Differential Evolution (SBDE), and non-dominated sorting genetic algorithm (NSGAII), it improves the FS-metric by 23.35% on average.
引用
收藏
页码:2929 / 2984
页数:56
相关论文
共 50 条
  • [41] Introducing an improved deep reinforcement learning algorithm for task scheduling in cloud computing
    Salari-Hamzehkhani, Behnam
    Akbari, Mehdi
    Safi-Esfahani, Faramarz
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [42] An Improved Differential Evolution Task Scheduling Algorithm Based on Cloud Computing
    Li Jingmei
    Liu Jia
    Wang Jiaxiang
    2018 17TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES), 2018, : 30 - 35
  • [43] A hyper-heuristic selector algorithm for cloud computing scheduling based on workflow features
    Kenari, Abdolreza Rasouli
    Shamsi, Mahboubeh
    OPSEARCH, 2021, 58 (04) : 852 - 868
  • [44] Evaluation of cloud computing resource scheduling based on improved optimization algorithm
    Yu, Huafeng
    COMPLEX & INTELLIGENT SYSTEMS, 2021, 7 (04) : 1817 - 1822
  • [45] An efficient cost-based algorithm for scheduling workflow tasks in cloud computing systems
    Amoon, Mohammed
    El-Bahnasawy, Nirmeen
    ElKazaz, Mai
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (05) : 1353 - 1363
  • [46] A hyper-heuristic selector algorithm for cloud computing scheduling based on workflow features
    Abdolreza Rasouli Kenari
    Mahboubeh Shamsi
    OPSEARCH, 2021, 58 : 852 - 868
  • [47] Improved FIFO scheduling algorithm based on fuzzy clustering in cloud computing
    Li J.
    Ma T.
    Tang M.
    Shen W.
    Jin Y.
    Ma, Tinghuai (thma@nuist.edu.cn), 1600, MDPI AG (08):
  • [48] An Improved Task Scheduling Algorithm Based on Potential Games in Cloud Computing
    Li, Xiao
    Zheng, Ming-chun
    Ren, Xinxin
    Liu, Xuan
    Zhang, Panpan
    Lou, Chao
    PERVASIVE COMPUTING AND THE NETWORKED WORLD, 2014, 8351 : 346 - 355
  • [49] An adaptive fault detector strategy for scientific workflow scheduling based on improved differential evolution algorithm in cloud
    Alaei, Mani
    Khorsand, Reihaneh
    Ramezanpour, Mohammadreza
    APPLIED SOFT COMPUTING, 2021, 99
  • [50] A Novel Dynamic Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing
    Ma, Juntao
    Li, Weitao
    Fu, Tian
    Yan, Lili
    Hu, Guojie
    WIRELESS COMMUNICATIONS, NETWORKING AND APPLICATIONS, WCNA 2014, 2016, 348 : 829 - 835