Inter-patient congestive heart failure automatic recognition using attention-based multi-scale convolutional neural network

被引:5
作者
Sun, Meiqi [1 ]
Si, Yujuan [1 ,2 ]
Yang, Weiyi [3 ,4 ]
Fan, Wei [1 ]
Zhou, Lin [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130012, Peoples R China
[2] Zhuhai Coll Sci & Technol, Sch Elect & Informat Engn, Zhuhai 519041, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Coll Artificial Intelligence, Nanjing 210000, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Coll Future Technol, Nanjing 210000, Peoples R China
关键词
Electrocardiogram (ECG); Congestive heart failure (CHF); Channel attention mechanism; Cardiovascular disease recognition; Deep neural network; SE-Net; Attention-based multi-scale convolutional neu-ral network (AMCNN); WAVELET TRANSFORM; ECG SIGNALS; CLASSIFICATION; DIAGNOSIS; ALGORITHM; DISEASE; TREE;
D O I
10.1016/j.measurement.2023.113239
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate classification of congestive heart failure (CHF) is essential to reduce the mortality of cardiovascular disease. Many existing researches suffer from unsatisfactory performance in inter-patient scheme closer to clinical application. To address this issue, this paper presents a novel attention-based multi-scale convolutional neural network (AMCNN) to automatically detect CHF. An effective multi-scale convolution structure is designed to enhance feature extraction capability. By combining channel attention mechanism, the output feature maps of multi-scale CNN are reweighted to explore the most decisive information. To validate the proposed method, we conducted experiments under both intra- and inter- patient schemes using long term ECGs from 73 subjects. The overall accuracies yield 99.97% and 99.71% respectively, outperforming traditional CNN 98.97% accuracy and the state-of-the-art methods. Moreover, our method performs well on unbalanced data with noise at speed of 0.000127 s for recognizing per segment, which has potential values to provide reliable diagnostic advice for cardiologists.
引用
收藏
页数:18
相关论文
共 57 条
[1]   Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
APPLIED INTELLIGENCE, 2019, 49 (01) :16-27
[2]   Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Raghavendra, U. ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Hagiwara, Yuki .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 :952-959
[3]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[4]   Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Adam, Muhammad ;
Tan, Jen Hong ;
Chua, Chua Kuang .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :62-71
[5]   Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Adam, Muhammad ;
Tan, Jen Hong ;
Koo, Jie Hui ;
Jain, Arihant ;
Lim, Choo Min ;
Chua, Kuang Chua .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :156-166
[6]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[7]   Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Sudarshan, Vidya K. ;
Oh, Shu Lih ;
Muhammad, Adam ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Chua, Chua K. ;
Chua, Kok Poo ;
Tan, Ru San .
NEURAL COMPUTING & APPLICATIONS, 2017, 28 (10) :3073-3094
[8]  
Aydin Seda Guzel, 2016, International Journal of Computer and Electrical Engineering, V8, P20, DOI [10.17706/ijcee.2016.8.4.272-279, 10.17706/ijcee.2016.8.4.272-279]
[9]   An efficient detection of congestive heart failure using frequency localized filter banks for the diagnosis with ECG signals [J].
Bhurane, Ankit A. ;
Sharma, Manish ;
San-Tan, Ru ;
Acharya, U. Rajendra .
COGNITIVE SYSTEMS RESEARCH, 2019, 55 :82-94
[10]   Cardiovascular Disease in the Developing World [J].
Celermajer, David S. ;
Chow, Clara K. ;
Marijon, Eloi ;
Anstey, Nicholas M. ;
Woo, Kam S. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 60 (14) :1207-1216