Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field

被引:26
|
作者
Zhang, Xu [1 ]
Min, Fuhong [1 ]
Dou, Yiping [1 ]
Xu, Yeyin [2 ]
机构
[1] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Aerosp Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
FitzHugh-Nagumo neuron; Bifurcation trees; Unstable periodic orbits; Antimonotonicity; CHAOS; MODEL; ANTIMONOTONICITY; OSCILLATOR; CIRCUIT; SPIKING; NETWORK;
D O I
10.1016/j.chaos.2023.113415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to investigating the analytical solutions of the modified FitzHugh-Nagumo (FHN) neuron model with external electric fields through by the discrete mapping method, which can provide a new perspective to the study of complex motions of the neuron. The bifurcation trees of period-1 to period-8 motions and period-3 to period-12 motions of FHN neuron are presented through the implicit discrete mapping method, and the stable and unstable orbits, which cannot study through the traditional numerical method, are calculated. The bifurcations and stability of the periodic orbits are developed via eigenvalues. The spiking firing of neurons can be observed through the discrete nodes in phase portraits and time histories of membrane potential. Moreover, the antimonotonicity of improved FHN model is reported with varying the controlled parameters. The two-parameter diagrams are employed to intuitively explain the generation and evolution of periodic motions. Moreover, the modified FHN system is implemented via hardware circuit, the experiments of which validate the semi-analytical method. The investigation results are useful for the development of artificial intelligence and medicine.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Further dynamical analysis of modified Fitzhugh-Nagumo model under the electric field
    Yan, Bo
    Panahi, Shirin
    He, Shaobo
    Jafari, Sajad
    NONLINEAR DYNAMICS, 2020, 101 (01) : 521 - 529
  • [2] Nonlinear dynamical analysis on coupled modified Fitzhugh-Nagumo neuron model
    Mishra, D
    Yadav, A
    Ray, S
    Kalra, PK
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 95 - 101
  • [3] Pattern transition and bifurcation analysis of ELU-type memristive FitzHugh-Nagumo neuron
    Xiao, Wu
    Min, Fuhong
    Lu, Jiakai
    Huo, Hailong
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [4] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [5] Coexisting firing analysis in a FitzHugh-Nagumo neuron system
    Shi, Wei
    Min, Fuhong
    Zhu, Jie
    NONLINEAR DYNAMICS, 2024, 112 (14) : 12469 - 12484
  • [6] Local bifurcation for the FitzHugh-Nagumo system
    Rocsoreanu, C
    Sterpu, M
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 345 - 356
  • [7] On a modification of the FitzHugh-Nagumo neuron model
    S. D. Glyzin
    A. Yu. Kolesov
    N. Kh. Rozov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 443 - 461
  • [8] On a Modification of the FitzHugh-Nagumo Neuron Model
    Glyzin, S. D.
    Kolesov, A. Yu
    Rozov, N. Kh
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (03) : 443 - 461
  • [9] Numerical bifurcation analysis of two coupled FitzHugh-Nagumo oscillators
    Anderson Hoff
    Juliana V. dos Santos
    Cesar Manchein
    Holokx A. Albuquerque
    The European Physical Journal B, 2014, 87
  • [10] Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model
    Alidousti J.
    Ghaziani R.K.
    Mathematical Models and Computer Simulations, 2017, 9 (3) : 390 - 403