On the solvability of some systems of integro-differential equations with transport and concentrated sources

被引:0
作者
Efendiev, Messoud [1 ,2 ]
Vougalter, Vitali [3 ]
机构
[1] Inst Computat Biol, Helmholtz Zentrum Munchen, Neuherberg, Germany
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Univ Toronto, Dept Math, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Integro-differential systems; dirac delta function; non-Fredholm operators; sobolev spaces; NONLINEAR SCHRODINGER-EQUATION; PROPERNESS PROPERTIES; ELLIPTIC-OPERATORS; FREDHOLM; DIRICHLET; EXISTENCE;
D O I
10.1080/17476933.2023.2229745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The article is devoted to the existence of solutions of a system of integro-differential equations involving the drift terms in the case of the normal diffusion and the influx/efflux terms proportional to the Dirac delta function. The proof of the existence of solutions is based on a fixed point technique. We use the solvability conditions for the non- Fredholm elliptic operators in unbounded domains. We emphasize that the study of the systems is more difficult than of the scalar case and requires to overcome more cumbersome technicalities.
引用
收藏
页码:1506 / 1522
页数:17
相关论文
共 43 条
  • [1] Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One
    Adami, R.
    Noja, D.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 1 - 16
  • [2] Standing lattice solitons in the discrete NLS equation with saturation
    Alfimov, G. L.
    Korobeinikov, A. S.
    Lustri, C. J.
    Pelinovsky, D. E.
    [J]. NONLINEARITY, 2019, 32 (09) : 3445 - 3484
  • [3] Wave Systems with an Infinite Number of Localized Traveling Waves
    Alfimov, Georgy L.
    Medvedeva, Elina V.
    Pelinovsky, Dmitry E.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [4] Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces
    Amrouche, C
    Girault, V
    Giroire, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01): : 55 - 81
  • [5] Mixed exterior Laplace's problem
    Amrouche, Cherif
    Bonzom, Florian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 124 - 140
  • [6] [Anonymous], 2002, Appl. Math. (Warsaw)
  • [7] [Anonymous], 2010, Int. J. Pure Appl. Math
  • [8] BENKIRANE N, 1988, CR ACAD SCI I-MATH, V307, P577
  • [9] BOLLEY P, 1993, J MATH PURE APPL, V72, P105
  • [10] Index property in Holderian theory for the Dirichlet exterior problem
    Bolley, P
    Lai, PT
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) : 315 - 334