Efficient lightweight network for video super-resolution

被引:4
作者
Luo, Laigan [2 ]
Yi, Benshun [2 ]
Wang, Zhongyuan [1 ]
Yi, Peng [1 ]
He, Zheng [1 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Video super-resolution; Bidirection alignment module; Lightweight network; Multi-scale pyramid; Spatial-temporal information;
D O I
10.1007/s00521-023-09065-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, video super-resolution has achieved an outstanding performance. However, many existing methods to solve video super-resolution usually make use of complex strategies, such as explicit optical flow, deformable convolution, which increase complexity and computation. In this paper, we propose a lightweight network for video super-resolution, namely Efficient Lightweight Network for Video Super-Resolution (ELNVSR). We design a Multi-group Block extracting long-distance spatial information to construct a lightweight Bidirection Alignment Module which is implicitly capable of fusing and propagating spatial-temporal information in a bidirectional way. Meanwhile, a Multi-scale Pyramid Block is built as a lightweight reconstruction module to extract different levels of information layer by layer. Comprehensive experiments are conducted on public benchmarks. The results demonstrate a promising performance with fewer parameters.
引用
收藏
页码:883 / 896
页数:14
相关论文
共 44 条
[1]   Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior [J].
Belekos, Stefanos P. ;
Galatsanos, Nikolaos P. ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1451-1464
[2]  
Chan KCK, 2021, Arxiv, DOI arXiv:2104.13371
[3]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[4]  
Cao JZ, 2023, Arxiv, DOI [arXiv:2106.06847, 10.48550/arXiv.2106.06847, DOI 10.48550/ARXIV.2106.06847]
[5]   BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond [J].
Chan, Kelvin C. K. ;
Wang, Xintao ;
Yu, Ke ;
Dong, Chao ;
Loy, Chen Change .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :4945-4954
[6]   A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition [J].
Chen, Kaixuan ;
Yao, Lina ;
Zhang, Dalin ;
Wang, Xianzhi ;
Chang, Xiaojun ;
Nie, Feiping .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (05) :1747-1756
[7]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   Fast and robust multiframe super resolution [J].
Farsiu, S ;
Robinson, MD ;
Elad, M ;
Milanfar, P .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (10) :1327-1344