The Influence of Different Recombination Pathways on Hysteresis in Perovskite Solar Cells with Ion Migration

被引:0
作者
Li, Biao [1 ]
Chen, Kun [2 ,3 ]
Hang, Pengjie [1 ]
Yao, Yuxin [1 ]
Kan, Chenxia [1 ]
Hu, Zechen [1 ]
Wang, Ying [1 ]
Zhang, Yiqiang [4 ]
Yang, Deren [1 ]
Yu, Xuegong [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
[2] China Acad Engn Phys, Inst Chem Mat, Sichuan Res Ctr New Mat, 596 Yinhe Rd, Chengdu 610200, Peoples R China
[3] Zhejiang Aiko Solar Energy Technol Co Ltd, 699 Haopai Rd, Yiwu 322000, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite solar cell; hysteresis; diffusion-drift modeling; recombination pathways; EFFICIENCY; TRANSPORT; PERFORMANCE; VACANCY; IMPACT;
D O I
10.3390/inorganics11020052
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The impact of hysteresis on the power conversion efficiency (PCE) of perovskite solar cells (PSCs) still faces uncertainties despite the rapid development of perovskite photovoltaics. Although ion migration in perovskites is regarded as the chief culprit for hysteresis, charge carrier recombination pathways in PSCs are proposed to be necessary for the occurrence of hysteresis. Here, the impact of both bulk recombination and interface recombination on hysteresis in PSCs is investigated via drift-diffusion modeling. The simulation results demonstrate a direct correlation between recombination pathways and hysteresis in PSCs with ion migration. The simulation reveals that recombination pathways in PSCs will react to the variation in charge carrier distribution under different voltage scanning directions induced by ion migration in absorber layers, which leads to hysteresis in PSCs. Moreover, the hysteresis in normal (N-I-P) PSCs with different electron transport layers (ETLs) including sintered SnO2, SnO2 nano crystals and TiO2 is experimentally explored. The results demonstrate that multiple recombination pathways coupled with ion migration can lead to obvious hysteresis in fabricated PSCs which is consistent with simulation results. This work provides great insight into hysteresis management upon composition, additive and interface engineering in PSCs.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability [J].
Bag, Monojit ;
Renna, Lawrence A. ;
Adhikari, Ramesh Y. ;
Karak, Supravat ;
Liu, Feng ;
Lahti, Paul M. ;
Russell, Thomas P. ;
Tuominen, Mark T. ;
Venkataraman, D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (40) :13130-13137
[2]   Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis [J].
Calado, Philip ;
Telford, Andrew M. ;
Bryant, Daniel ;
Li, Xiaoe ;
Nelson, Jenny ;
O'Regan, Brian C. ;
Barnes, Piers R. F. .
NATURE COMMUNICATIONS, 2016, 7
[3]   Origin of J-V Hysteresis in Perovskite Solar Cells [J].
Chen, Bo ;
Yang, Mengjin ;
Priya, Shashank ;
Zhu, Kai .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (05) :905-917
[4]   Promises and challenges of perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Buonassisi, Tonio ;
Graetzel, Michael ;
Abate, Antonio ;
Tress, Wolfgang ;
Hagfeldt, Anders .
SCIENCE, 2017, 358 (6364) :739-744
[5]   IonMonger: a free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics [J].
Courtier, N. E. ;
Cave, J. M. ;
Walker, A. B. ;
Richardson, G. ;
Foster, J. M. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2019, 18 (04) :1435-1449
[6]   A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells [J].
Courtier, N. E. ;
Richardson, G. ;
Foster, J. M. .
APPLIED MATHEMATICAL MODELLING, 2018, 63 :329-348
[7]   Ionic transport in hybrid lead iodide perovskite solar cells [J].
Eames, Christopher ;
Frost, Jarvist M. ;
Barnes, Piers R. F. ;
O'Regan, Brian C. ;
Walsh, Aron ;
Islam, M. Saiful .
NATURE COMMUNICATIONS, 2015, 6
[8]   What Is Moving in Hybrid Halide Perovskite Solar Cells? [J].
Frost, Jarvist M. ;
Walsh, Aron .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) :528-535
[9]   Organohalide lead perovskites for photovoltaic applications [J].
Gao, Peng ;
Graetzel, Michael ;
Nazeeruddin, Mohammad K. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2448-2463
[10]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]