On accumulation points of F-pure thresholds on regular local rings

被引:0
作者
Sato, Kenta [1 ]
机构
[1] Kyushu Univ, Fac Math, 744 Motooka,Nishi Ku, Fukuoka 8190395, Japan
关键词
Accumulation points; F-pure thresholds; Strongly F-regular singularities; Non-standard extension; ASCENDING CHAIN CONDITION; LOG CANONICAL THRESHOLDS; MULTIPLIER IDEALS; ACC;
D O I
10.1016/j.jalgebra.2023.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Blickle, Mustata and Smith proposed two conjectures on the limits of F-pure thresholds. One conjecture asks whether or not the limit of a sequence of F-pure thresholds of principal ideals on regular local rings of fixed dimension can be written as an F-pure thresshold in lower dimension. Another conjecture predicts that any F-pure threshold of a formal power series can be written as the F-pure threshold of a polynomial. In this paper, we prove that the first conjecture has a counterexample but a weaker statement still holds. We also give a partial affirmative answer to the second conjecture.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:614 / 635
页数:22
相关论文
共 24 条
[1]   Ascending chain condition for log canonical thresholds and termination of log flips [J].
Birkar, Caucher .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (01) :173-180
[2]   Singularities of linear systems and boundedness of Fano varieties [J].
Birkar, Caucher .
ANNALS OF MATHEMATICS, 2021, 193 (02) :347-405
[3]   Discreteness and rationality of F-thresholds [J].
Blickle, Manuel ;
Mustata, Mircea ;
Smith, Karen E. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :43-61
[4]   Discreteness and rationality of F-jumping numbers on singular varieties [J].
Blickle, Manuel ;
Schwede, Karl ;
Takagi, Shunsuke ;
Zhang, Wenliang .
MATHEMATISCHE ANNALEN, 2010, 347 (04) :917-949
[5]   F-THRESHOLDS OF HYPERSURFACES [J].
Blickle, Manuel ;
Mustata, Mircea ;
Smith, Karen E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6549-6565
[6]   SHOKUROV'S ACC CONJECTURE FOR LOG CANONICAL THRESHOLDS ON SMOOTH VARIETIES [J].
de Fernex, Tommaso ;
Ein, Lawrence ;
Mustata, Mircea .
DUKE MATHEMATICAL JOURNAL, 2010, 152 (01) :93-114
[7]   ACC for log canonical thresholds [J].
Hacon, Christopher D. ;
McKernan, James ;
Xu, Chenyang .
ANNALS OF MATHEMATICS, 2014, 180 (02) :523-571
[8]   On a generalization of test ideals [J].
Hara, N ;
Takagi, S .
NAGOYA MATHEMATICAL JOURNAL, 2004, 175 :59-74
[9]   F-pure Thresholds of Homogeneous Polynomials [J].
Hernandez, Daniel J. ;
Nunez-Betancourt, Luis ;
Witt, Emily E. ;
Zhang, Wenliang .
MICHIGAN MATHEMATICAL JOURNAL, 2016, 65 (01) :57-87
[10]  
Kollar, 1997, Algebraic Geometry, Santa Cruz 1995, P221, DOI [10.1090/pspum/062.1/1492525, DOI 10.1090/PSPUM/062.1/1492525]