Microbial production of fuels, commodity chemicals, and materials from sustainable sources of carbon and energy

被引:6
作者
Cowan, Aidan E. [1 ,4 ]
Klass, Sarah H. [1 ,5 ,6 ]
Winegar, Peter H. [1 ,3 ]
Keasling, Jay D. [1 ,2 ,3 ,5 ,6 ,7 ,8 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA 94608 USA
[2] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, QB3 Inst, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[7] Shenzhen Inst Adv Technol, Ctr Synthet Biochem, Shenzhen 518055, Peoples R China
[8] Tech Univ Denmark, Novo Nord Fdn, Ctr Biosustainabil, Kemitorvet Bldg 220, DK-2800 Lyngby, Denmark
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Synthetic biology; Metabolic engineering; Engineered microorganisms; Microbial fermentation; Plant biomass; C1; feedstocks; Plastic waste; Biofuels; Biopolymers; ESCHERICHIA-COLI; LIFE-CYCLE; POLYETHYLENE; PLASTICS; BIOSYNTHESIS; DEGRADATION; CONVERSION; BIOFUELS; BIOMASS; ENZYME;
D O I
10.1016/j.coisb.2023.100482
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anthropogenic carbon emissions are driving rapid changes to the earth's climate, disrupting whole ecosystems and endangering the stability of human society. Innovations in engineered microbial fermentation enable the fossil resource-free production of fuels, commodity chemicals, and materials, thereby reducing the carbon emissions associated with these products. Microorganisms have been engineered to catabolize sustainable sources of carbon and energy (i.e., plant biomass, plastic waste, and one-carbon feedstocks) and biosynthesize carbonneutral or carbon-negative products. These engineering efforts exploit and optimize natural biological pathways or generate unnatural pathways which can biosynthesize chemicals that have not yet been accessed using synthetic chemistry. Recent advances in microbial fermentation seek not only to maximize the titer, rate, and yield of desired products, but also to tailor microbial catabolism to utilize inexpensive feedstocks. Ultimately, these advances aim to lower the cost of bioproduction so that microorganism-derived chemicals can be economically competitive with fossil-derived chemicals.
引用
收藏
页数:10
相关论文
共 66 条
[1]   Production Cost and Carbon Footprint of Biomass-Derived Dimethylcyclooctane as a High-Performance Jet Fuel Blendstock [J].
Baral, Nawa Raj ;
Yang, Minliang ;
Harvey, Benjamin G. ;
Simmons, Blake A. ;
Mukhopadhyay, Aindrila ;
Lee, Taek Soon ;
Scown, Corinne D. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35) :11872-11882
[2]   Directed evolution of an efficient and thermostable PET depolymerase [J].
Bell, Elizabeth L. ;
Smithson, Ross ;
Kilbride, Siobhan ;
Foster, Jake ;
Hardy, Florence J. ;
Ramachandran, Saranarayanan ;
Tedstone, Aleksander A. ;
Haigh, Sarah J. ;
Garforth, Arthur A. ;
Day, Philip J. R. ;
Levy, Colin ;
Shaver, Michael P. ;
Green, Anthony P. .
NATURE CATALYSIS, 2022, 5 (08) :673-+
[3]   Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams [J].
Chae, Tong Un ;
Ko, Yoo-Sung ;
Hwang, Kyu-Sang ;
Lee, Sang Yup .
METABOLIC ENGINEERING, 2017, 41 :82-91
[4]   Enzymatic degradation of plant biomass and synthetic polymers [J].
Chen, Chun-Chi ;
Dai, Longhai ;
Ma, Lixin ;
Guo, Rey-Ting .
NATURE REVIEWS CHEMISTRY, 2020, 4 (03) :114-126
[5]   Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions [J].
Cheong, Seokjung ;
Clomburg, James M. ;
Gonzalez, Ramon .
NATURE BIOTECHNOLOGY, 2016, 34 (05) :556-561
[6]   Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms [J].
Choi, So Young ;
Cho, In Jin ;
Lee, Youngjoon ;
Park, Seongjin ;
Lee, Sang Yup .
ENZYMATIC POLYMERIZATIONS, 2019, 627 :125-162
[7]   An orthogonal metabolic framework for one-carbon utilization [J].
Chou, Alexander ;
Lee, Seung Hwan ;
Zhu, Fayin ;
Clomburg, James M. ;
Gonzalez, Ramon .
NATURE METABOLISM, 2021, 3 (10) :1385-+
[8]   Bio-based production of monomers and polymers by metabolically engineered microorganisms [J].
Chung, Hannah ;
Yang, Jung Eun ;
Ha, Ji Yeon ;
Chae, Tong Un ;
Shin, Jae Ho ;
Gustavsson, Martin ;
Lee, Sang Yup .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 36 :73-84
[9]   Biosynthesis of polycyclopropanated high energy biofuels [J].
Cruz-Morales, Pablo ;
Yin, Kevin ;
Landera, Alexander ;
Cort, John R. ;
Young, Robert P. ;
Kyle, Jennifer E. ;
Bertrand, Robert ;
Iavarone, Anthony T. ;
Acharya, Suneil ;
Cowan, Aidan ;
Chen, Yan ;
Gin, Jennifer W. ;
Scown, Corinne D. ;
Petzold, Christopher J. ;
Araujo-Barcelos, Carolina ;
Sundstrom, Eric ;
George, Anthe ;
Liu, Yuzhong ;
Klass, Sarah ;
Nava, Alberto A. ;
Keasling, Jay D. .
JOULE, 2022, 6 (07) :1590-+
[10]   Life Cycle Assessment: a review of the methodology and its application to sustainability [J].
Curran, Mary Ann .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (03) :273-277