MilInst: Enhanced Instance Segmentation Framework for Military Camouflaged Targets Using Sparse Instance Activation

被引:1
作者
Li, Bing [1 ]
Zhu, Enze [1 ]
Zhou, Rongqian [1 ]
Cheng, Huang [1 ]
机构
[1] Shantou Univ, Sch Engn, Shantou 515041, Peoples R China
关键词
Instance segmentation; deep learning; military camouflaged targets; OBJECT; NETWORK;
D O I
10.1109/ACCESS.2023.3318486
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, an improved end-to-end framework for instance segmentation of military camouflaged targets, referred to as MilInst, is proposed. The framework builds upon SparseInst method developed by Cheng et al. (2022). Several improvements are introduced to enhance the model's performance. First, Receptive Field Enhancement Module (RFEM) is employed to capture broader contextual information. Additionally, Feature Merging Module (FMM) is utilized to eliminate feature noise through the implementation of a matrix decomposition method. Furthermore, a novel linear dynamic bipartite matching approach is proposed, facilitating a smooth transition from one-to-one matching to one-to-many, and eventually achieving accurate to one-to-one matching. Experimental results demonstrate the effectiveness of MilInst algorithm. Comparisons with a selected real-time instance segmentation baseline model reveal superior performance, with MilInst framework achieving the highest mean Average Precision (mAP) index of 84.8% on a self-made dataset.
引用
收藏
页码:106387 / 106396
页数:10
相关论文
共 36 条
[1]   YOLACT Real-time Instance Segmentation [J].
Bolya, Daniel ;
Zhou, Chong ;
Xiao, Fanyi ;
Lee, Yong Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9156-9165
[2]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]   Sparse Instance Activation for Real-Time Instance Segmentation [J].
Cheng, Tianheng ;
Wang, Xinggang ;
Chen, Shaoyu ;
Zhang, Wenqiang ;
Zhang, Qian ;
Huang, Chang ;
Zhang, Zhaoxiang ;
Liu, Wenyu .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :4423-4432
[5]   Boundary-Preserving Mask R-CNN [J].
Cheng, Tianheng ;
Wang, Xinggang ;
Huang, Lichao ;
Liu, Wenyu .
COMPUTER VISION - ECCV 2020, PT XIV, 2020, 12359 :660-676
[6]  
Das S, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P2165, DOI 10.23919/ICIF.2018.8455321
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Everingham M, 2006, LECT NOTES ARTIF INT, V3944, P117
[9]  
Fang Z., 2019, P ACM TUR CEL C CHIN, P1
[10]   SSAP: Single-Shot Instance Segmentation With Affinity Pyramid [J].
Gao, Naiyu ;
Shan, Yanhu ;
Wang, Yupei ;
Zhao, Xin ;
Yu, Yinan ;
Yang, Ming ;
Huang, Kaiqi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :642-651