共 68 条
Metallic BSi3 monolayer as a high rate-capacity anode material for flexible potassium ion batteries: A first-principles study
被引:50
作者:
Du, Junliang
[1
]
Lin, He
[2
]
Huang, Yong
[3
]
机构:
[1] Mianyang Normal Univ, Coll Chem & Chem Engn, Mianyang 621000, Peoples R China
[2] Ludong Univ, Sch Chem & Mat Sci, Yantai 264025, Peoples R China
[3] Hebei North Univ, Coll Lab Med, Key Lab Biomed Mat Zhangjiakou, Zhangjiakou 075000, Peoples R China
来源:
关键词:
Potassium ion battery;
Anode material;
B -Si binary compound;
First -principles calculation;
LITHIUM-SULFUR BATTERIES;
HIGH-PERFORMANCE ANODE;
ELASTIC BAND METHOD;
NI FOAM;
NANOSHEETS;
ELECTRODES;
COMPOSITE;
SILICENE;
D O I:
10.1016/j.flatc.2023.100551
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Potassium ion batteries (PIBs) have attracted great attention as a competitive substitute for lithium ion batteries (LIBs) because of the good safety and low cost; nevertheless, their practical application is severely impeded by the lack of a high-performance anode material. Motivated by the high capacity of silicon and excellent stability of boron, we investigate a 2D B-Si binary compound (h-BSi3 and o-BSi3) as the anode material of PIBs. Our firstprinciples calculation results demonstrate that BSi3 monolayers have the intrinsic metallicity with high electrical conductivity, which is of great importance for the rapid electronic transport during electrochemical process. Benefitting from the strong affinity of potassium, the h-BSi3 (o-BSi3) anode achieves a high specific capacity of 1268.45 (1190.15) mA h/g and a low averaged open circuit voltage of 0.38 (0.48) V. The potassium diffusion barrier on the h-BSi3 (o-BSi3) anode is as low as 0.02 (0.04) eV. Moreover, a small lattice expansion is observed for the BSi3 anodes without metal dendrite formation at the final potassiated stage, which is beneficial to prolong the cycle life of PIBs. All the unique features suggest that BSi3 monolayers are promising anode candidates for flexible PIBs.
引用
收藏
页数:8
相关论文