Area-Selective Atomic Layer Deposition for Resistive Random-Access Memory Devices

被引:3
作者
Oh, Il-Kwon [2 ,3 ,4 ]
Khan, Asir Intisar [1 ]
Qin, Shengjun [1 ]
Lee, Yujin [2 ]
Wong, H. -S. Philip [1 ]
Pop, Eric [1 ]
Bent, Stacey F. [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Ajou Univ, Dept Elect & Comp Engn, Suwon 16499, South Korea
[4] Ajou Univ, Dept Intelligence Semicond Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
area-selective atomic layer deposition; dielectrics; resistive random-access memory; filament confinement; data storage device; RRAM;
D O I
10.1021/acsami.3c05822
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Resistive random-access memory (RRAM) is a promising technology for data storage and neuromorphic computing; Resistive random-access memory (RRAM) is a promising technology for data storage and neuromorphic computing; however, cycle-to-cycle and device-to-device variability limits its widespread adoption and high-volume manufacturability. Improving the structural accuracy of RRAM devices during fabrication can reduce these variabilities by minimizing the filamentary randomness within a device. Here, we studied area-selective atomic layer deposition (AS-ALD) of the HfO2 dielectric for the fabrication of RRAM devices with higher reliability and accuracy. Without requiring photolithography, first we demonstrated ALD of HfO2 patterns uniformly and selectively on Pt bottom electrodes for RRAM but not on the underlying SiO2/Si substrate. RRAM devices fabricated using AS-ALD showed significantly narrower operating voltage range (2.6 x improvement) and resistance states than control devices without AS-ALD, improving the overall reliability of RRAM. Irrespective of device size (1 x 1, 2 x 2, and 5 x 5 mu m(2)), we observed similar improvement, which is an inherent outcome of the AS-ALD technique. Our demonstration of AS-ALD for improved RRAM devices could further encourage the adoption of such techniques for other data storage technologies, including phase-change, magnetic, and ferroelectric RAM.
引用
收藏
页码:43087 / 43093
页数:7
相关论文
共 26 条
[1]  
Baek I. G., 2005, IEEE INT EL DEV M 20
[2]  
Chen A., 2011, Solid State Electrochemistry II, V1st, P1, DOI DOI 10.1002/9783527635566
[3]   Fully Self-Aligned Via Integration for Interconnect Scaling Beyond 3nm Node [J].
Chen, H. P. ;
Wu, Y. H. ;
Huang, H. Y. ;
Tsai, C. H. ;
Lee, S. K. ;
Lee, C. C. ;
Wei, T. H. ;
Yao, H. C. ;
Wang, Y. C. ;
Liao, C. Y. ;
Chang, H. K. ;
Lu, C. W. ;
Shue, Winston S. ;
Cao, Min .
2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
[4]   Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Porter, DW ;
Bent, SF .
APPLIED PHYSICS LETTERS, 2005, 86 (19) :1-3
[5]   Chemistry for positive pattern transfer using area-selective atomic layer deposition [J].
Chen, R ;
Bent, SF .
ADVANCED MATERIALS, 2006, 18 (08) :1086-+
[6]   Perspective: New process technologies required for future devices and scaling [J].
Clark, R. ;
Tapily, K. ;
Yu, K. -H. ;
Hakamata, T. ;
Consiglio, S. ;
O'Meara, D. ;
Wajda, C. ;
Smith, J. ;
Leusink, G. .
APL MATERIALS, 2018, 6 (05)
[7]   Mechanistic Study of Nucleation Enhancement in Atomic Layer Deposition by Pretreatment with Small Organometallic Molecules [J].
de Paula, Camila ;
Richey, Nathaniel E. ;
Zeng, Li ;
Bent, Stacey F. .
CHEMISTRY OF MATERIALS, 2020, 32 (01) :315-325
[8]   Causes and consequences of the stochastic aspect of filamentary RRAM [J].
Degraeve, R. ;
Fantini, A. ;
Raghavan, N. ;
Goux, L. ;
Clima, S. ;
Govoreanu, B. ;
Belmonte, A. ;
Linten, D. ;
Jurczak, M. .
MICROELECTRONIC ENGINEERING, 2015, 147 :171-175
[9]  
English C. D., 2016, 2016 IEEE INT EL DEV, p5.6.1
[10]   Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning [J].
Fang, Ming ;
Ho, Johnny C. .
ACS NANO, 2015, 9 (09) :8651-8654