A Conceptual Architecture for a Quantum-HPC Middleware

被引:5
作者
Saurabh, Nishant [1 ]
Jha, Shantenu [2 ,3 ]
Luckow, Andre [4 ,5 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
[2] Rutgers State Univ, Newark, NJ USA
[3] Brookhaven Natl Lab, Upton, NY USA
[4] Ludwig Maximilian Univ Munich, Munich, Germany
[5] BMW Grp, Munich, Germany
来源
2023 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, QSW | 2023年
关键词
Quantum Computing; HPC; Middleware;
D O I
10.1109/QSW59989.2023.00023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quantum computing is important for science and industry as it offers the potential to solve certain complex problems and perform calculations significantly faster than classical computers. Quantum computing systems evolved from monolithic systems towards modular architectures comprising multiple quantum processing units (QPUs) coupled to classical computing nodes (HPC). With the increasing scale, middleware systems that facilitate the efficient coupling of quantum-classical computing are becoming critical. Through an in-depth analysis of quantum applications, integration patterns and systems, we identified a gap in understanding Quantum-HPC middleware systems. We present a conceptual middleware to facilitate reasoning about quantum-classical integration and serve as the basis for a future middleware system. A key contribution of this paper lies in leveraging well-established high-performance computing abstractions for managing workloads, tasks, and resources to seamlessly integrate quantum computing into HPC systems.
引用
收藏
页码:116 / 127
页数:12
相关论文
共 103 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]  
Alcazar J., ARXIV
[3]  
Amazon, 2022, Amazon Braket
[4]  
Awasthi Abhishek, 2023, Quantum computing techniques for multi-knapsack problems
[5]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[6]   Industry quantum computing applications [J].
Bayerstadler, Andreas ;
Becquin, Guillaume ;
Binder, Julia ;
Botter, Thierry ;
Ehm, Hans ;
Ehmer, Thomas ;
Erdmann, Marvin ;
Gaus, Norbert ;
Harbach, Philipp ;
Hess, Maximilian ;
Klepsch, Johannes ;
Leib, Martin ;
Luber, Sebastian ;
Luckow, Andre ;
Mansky, Maximilian ;
Mauerer, Wolfgang ;
Neukart, Florian ;
Niedermeier, Christoph ;
Palackal, Lilly ;
Pfeiffer, Ruben ;
Polenz, Carsten ;
Sepulveda, Johanna ;
Sievers, Tammo ;
Standen, Brian ;
Streif, Michael ;
Strohm, Thomas ;
Utschig-Utschig, Clemens ;
Volz, Daniel ;
Weiss, Horst ;
Winter, Fabian .
EPJ QUANTUM TECHNOLOGY, 2021, 8 (01)
[7]   A generative modeling approach for benchmarking and training shallow quantum circuits [J].
Benedetti, Marcello ;
Garcia-Pintos, Delfina ;
Perdomo, Oscar ;
Leyton-Ortega, Vicente ;
Nam, Yunseong ;
Perdomo-Ortiz, Alejandro .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[8]  
Beranek Jakub, 2023, Zenodo
[9]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, DOI 10.48550/ARXIV.1811.04968]
[10]  
Berman F., 1996, Proceedings of the 1996 ACM/IEEE conference on Supercomputing, P39