Nonparametric Option Pricing with Generalized Entropic Estimators

被引:0
|
作者
Almeida, Caio [1 ]
Freire, Gustavo [2 ,3 ]
Azevedo, Rafael [4 ]
Ardison, Kym [5 ]
机构
[1] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[2] Erasmus Univ, Erasmus Sch Econ, Rotterdam, Netherlands
[3] EPGE Brazilian Sch Econ & Finance, Rio De Janeiro, Brazil
[4] ASQ Capital, Sao Paulo, Brazil
[5] SPX Capital, Rio De Janeiro, Brazil
关键词
Cressie-Read discrepancies; Generalized entropy; Nonparametric estimation; Option pricing; Risk-neutral measure; HEDGING DERIVATIVE SECURITIES; VOLATILITY; MOMENTS; MODEL; IMPLICIT; RETURN; GMM;
D O I
10.1080/07350015.2022.2115499
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a family of nonparametric estimators for an option price that require only the use of underlying return data, but can also easily incorporate information from observed option prices. Each estimator comes from a risk-neutral measure minimizing generalized entropy according to a different Cressie-Read discrepancy. We apply our method to price S&P 500 options and the cross-section of individual equity options, using distinct amounts of option data in the estimation. Estimators incorporating mild nonlinearities produce optimal pricing accuracy within the Cressie-Read family and outperform several benchmarks such as Black-Scholes and different GARCH option pricing models. Overall, we provide a powerful option pricing technique suitable for scenarios of limited option data availability.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [1] An application of nonparametric volatility estimators to option pricing
    Kenmoe R.N.
    Sanfelici S.
    Decisions in Economics and Finance, 2014, 37 (2) : 393 - 412
  • [2] ALTERNATIVE TILTS FOR NONPARAMETRIC OPTION PRICING
    Haley, M. Ryan
    Walker, Todd B.
    JOURNAL OF FUTURES MARKETS, 2010, 30 (10) : 983 - 1006
  • [3] Option Pricing With Modular Neural Networks
    Gradojevic, Nikola
    Gencay, Ramazan
    Kukolj, Dragan
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (04): : 626 - 637
  • [4] Generalized parameter functions for option pricing
    Andreou, Panayiotis C.
    Charalambous, Chris
    Martzoukos, Spiros H.
    JOURNAL OF BANKING & FINANCE, 2010, 34 (03) : 633 - 646
  • [5] Nonparametric option pricing under shape restrictions
    Aït-Sahalia, Y
    Duarte, J
    JOURNAL OF ECONOMETRICS, 2003, 116 (1-2) : 9 - 47
  • [6] OPTION PRICING FOR GENERALIZED DISTRIBUTIONS
    MCDONALD, JB
    BOOKSTABER, RM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (12) : 4053 - 4068
  • [7] Nonparametric Option Pricing with No-Arbitrage Constraints
    Birke, Melanie
    Pilz, Kay F.
    JOURNAL OF FINANCIAL ECONOMETRICS, 2009, 7 (02) : 53 - 76
  • [8] Parametric option pricing: A divide-and-conquer approach
    Gradojevic, Nikola
    Kukolj, Dragan
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (19) : 1528 - 1535
  • [9] A generalized European option pricing model with risk management
    Feng, Chengxiao
    Tan, Jie
    Jiang, Zhenyu
    Chen, Shuang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 545
  • [10] Assessing the quality of volatility estimators via option pricing
    Sanfelici, Simona
    Uboldi, Adamo
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2014, 18 (02) : 103 - 124