Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene

被引:18
|
作者
Wei, Jiasheng [1 ]
Dai, Lei [1 ,2 ,3 ]
Xi, Xiangju [1 ]
Chen, Zhuo [4 ]
Zhu, Meng [1 ]
Dong, Cuihua [2 ]
Ding, Shujiang [3 ]
Lei, Tingzhou [5 ]
机构
[1] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Xian 710021, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Key Lab Pulp & Paper Sci & Technol, Minist Educ, Jinan 250353, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Chem, Xian Key Lab Sustainable Energy Mat Chem, Xian 710049, Peoples R China
[4] North China Univ Water Resources & Elect Power, Sch Management & Econ, Zhengzhou 450046, Peoples R China
[5] Changzhou Univ, Natl Local Joint Engn Res Ctr Biomass Refining & H, Inst Urban & Rural Mining, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
TOCNF; Paper; Hydrogel; MXene; EMI shielding; LIGHTWEIGHT; COMPOSITES; FILMS;
D O I
10.1016/j.carbpol.2023.121447
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
An effective strategy was demonstrated to design an electromagnetic interference (EMI) shielding paper via a facile surface treatment on paper. TEMPO-oxidized cellulose nanofibers (TOCN) were first integrated with Ti3C2Tx MXene, and subsequently cast onto a filter paper with cationic guar gum (CGG) in a sequential way. TOCN and CGG generated a self-assembling hydrogel and formed a MXene-containing hydrogel film on top of the filter paper. The hydrogel film enhanced the tensile strength (9.49 MPa) of composite paper, and resulted in a 17 % increase as compared to the control. The composite paper containing 80 mg MXene (namely, 2.07 mg & sdot;cm  2) showed a conductivity of 3843 S & sdot;m  1 and EMI shielding effectiveness (EMI SE) of 49.37 dB. Furthermore, the 2layer assembled TC-M 80 hydrogel composite paper achieved an EMI SE of 73.99 dB. Importantly, this composite paper showed higher EMI SE and lower thickness than a lot of reported materials. The presence of TOCN and CGG also protected MXene against several solvents and the incorporation of polydimethylsiloxane (PDMS) further improved the durability of the composite paper. This work provides a novel and simple strategy to design robust, ultrathin and flexible EMI shielding materials, and it might also inspire other work in paper-based functional materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding
    Liu, Ji
    Zhang, Hao-Bin
    Sun, Renhui
    Liu, Yafeng
    Liu, Zhangshuo
    Zhou, Aiguo
    Yu, Zhong-Zhen
    ADVANCED MATERIALS, 2017, 29 (38)
  • [32] Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property
    Sang, Min
    Liu, Guanghui
    Liu, Shuai
    Wu, Yuxuan
    Xuan, Shouhu
    Wang, Sheng
    Xuan, Shanyong
    Jiang, Wanquan
    Gong, Xinglong
    CHEMICAL ENGINEERING JOURNAL, 2021, 414
  • [33] Porous and Ultra-Flexible Crosslinked MXene/Polyimide Composites for Multifunctional Electromagnetic Interference Shielding
    Zeng, Zhi-Hui
    Wu, Na
    Wei, Jing-Jiang
    Yang, Yun-Fei
    Wu, Ting-Ting
    Li, Bin
    Hauser, Stefanie Beatrice
    Yang, Wei-Dong
    Liu, Jiu-Rong
    Zhao, Shan-Yu
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [34] Biomimetic Porous MXene-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding
    Yang, Yunfei
    Li, Bin
    Wu, Na
    Liu, Wei
    Zhao, Shanyu
    Zhang, Chuanfang John
    Liu, Jiurong
    Zeng, Zhihui
    ACS MATERIALS LETTERS, 2022, 4 (11): : 2352 - 2361
  • [35] Flexible superhydrophobic fabric with electromagnetic interference shielding based on MXene and cellulose nanofibers
    Li, Jun
    Xu, Lihui
    Pan, Hong
    Wang, Liming
    Liu, Yadong
    Shen, Yong
    JOURNAL OF POROUS MATERIALS, 2024, 31 (03) : 945 - 957
  • [36] Ultrathin, flexible CNTs@MXene film fabricated with electrophoretic deposition method for high-performance electromagnetic interference shielding
    Tong, Jinling
    Yang, Dongxu
    Liu, Xingmin
    Lu, Shaowei
    Wang, Jijie
    Zheng, Boxiong
    Zhao, Zihan
    Song, Yutong
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (15) : 3791 - 3800
  • [37] Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding
    Wan, Yan-Jun
    Li, Xing-Miao
    Zhu, Peng-Li
    Sun, Rong
    Wong, Ching-Ping
    Liao, Wei-Hsin
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 130
  • [38] Flexible, robust, sandwich structure polyimide composite film with alternative MXene and Ag NWs layers for electromagnetic interference shielding
    Zhang, Yu
    Gao, Qiang
    Sheng, Xianzhe
    Zhang, Shuai
    Chen, Junjie
    Ma, Yan
    Qin, Jianbin
    Zhao, Yongsheng
    Shi, Xuetao
    Zhang, Guangcheng
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 159 : 194 - 203
  • [39] Ultrathin carbon layer coated MXene/PBO nanofiber films for excellent electromagnetic interference shielding and thermal stability
    Gong, Kaijie
    Peng, Yanmeng
    Liu, An
    Qi, Shuhua
    Qiu, Hua
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 176
  • [40] Flexible MXene/CuNWs/tartaric acid composite fabrics constructed by stacking assembly for electromagnetic interference shielding
    Kong, Si-yu
    Zhang, Hao-wen
    Cheng, Ming-hua
    Yu, Yuan
    Feng, Zhe-sheng
    Meng, Fanbin
    Wang, Yan
    POLYMER, 2024, 313