Spatial-Temporal Semantic Perception Network for Remote Sensing Image Semantic Change Detection

被引:13
|
作者
He, You [1 ]
Zhang, Hanchao [1 ]
Ning, Xiaogang [1 ]
Zhang, Ruiqian [1 ]
Chang, Dong [1 ]
Hao, Minghui [1 ]
机构
[1] Chinese Acad Surveying & Mapping, Inst Photogrammetry & Remote Sensing, Beijing 100036, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
semantic change detection; change detection; semantic segmentation; spatial detail; semantic perception; spatial-temporal semantic; SIAMESE NETWORK; SERIES;
D O I
10.3390/rs15164095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic change detection (SCD) is a challenging task in remote sensing, which aims to locate and identify changes between the bi-temporal images, providing detailed "from-to" change information. This information is valuable for various remote sensing applications. Recent studies have shown that multi-task networks, with dual segmentation branches and single change branch, are effective in SCD tasks. However, these networks primarily focus on extracting contextual information and ignore spatial details, resulting in the missed or false detection of small targets and inaccurate boundaries. To address the limitations of the aforementioned methods, this paper proposed a spatial-temporal semantic perception network (STSP-Net) for SCD. It effectively utilizes spatial detail information through the detail-aware path (DAP) and generates spatial-temporal semantic-perception features through combining deep contextual features. Meanwhile, the network enhances the representation of semantic features in spatial and temporal dimensions by leveraging a spatial attention fusion module (SAFM) and a temporal refinement detection module (TRDM). This augmentation results in improved sensitivity to details and adaptive performance balancing between semantic segmentation (SS) and change detection (CD). In addition, by incorporating the invariant consistency loss function (ICLoss), the proposed method constrains the consistency of land cover (LC) categories in invariant regions, thereby improving the accuracy and robustness of SCD. The comparative experimental results on three SCD datasets demonstrate the superiority of the proposed method in SCD. It outperforms other methods in various evaluation metrics, achieving a significant improvement. The Sek improvements of 2.84%, 1.63%, and 0.78% have been observed, respectively.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Semantic-Aware Dense Representation Learning for Remote Sensing Image Change Detection
    Chen, Hao
    Li, Wenyuan
    Chen, Song
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] SFFAFormer: An Semantic Fusion and Feature Accumulation Approach for Remote Sensing Image Change Detection
    Hong, Yile
    Liu, Xiangfu
    Chen, Mingwei
    Pang, Yan
    Huang, Teng
    Wei, Bo
    Lang, Aobo
    Zhang, Xi
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 516 - 529
  • [33] Remote sensing image recommendation based on spatial-temporal model
    Chen, Xu
    Liu, Yixian
    Li, Feng
    Li, Xiangxiang
    Jia, Xiangyang
    COMPUTERS & GEOSCIENCES, 2021, 157
  • [34] Remote sensing image semantic segmentation network based on ENet
    Wang, Yiqin
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (12): : 1219 - 1227
  • [35] STAIR FUSION NETWORK FOR REMOTE SENSING IMAGE SEMANTIC SEGMENTATION
    Hua, Wenyi
    Liu, Jia
    Liu, Fang
    Zhang, Wenhua
    An, Jiaqi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5499 - 5502
  • [36] Semantic Segmentation of Remote Sensing Image Based on Neural Network
    Wang Ende
    Qi Kai
    Li Xuepeng
    Peng Liangyu
    ACTA OPTICA SINICA, 2019, 39 (12)
  • [37] Context Aggregation Network for Remote Sensing Image Semantic Segmentation
    Zhang, Changxing
    Bai, Xiangyu
    Wang, Dapeng
    Zhou, KeXin
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2024, 23 (03)
  • [38] Improved SegFormer Remote Sensing Image Semantic Segmentation Network
    Zhang, Hao
    He, Lingmin
    Pan, Chen
    Computer Engineering and Applications, 2023, 59 (24) : 248 - 258
  • [39] STRobustNet: Efficient Change Detection via Spatial-Temporal Robust Representations in Remote Sensing
    Zhang, Hong
    Teng, Yuhang
    Li, Haojie
    Wang, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [40] MISGNet: A Multilevel Intertemporal Semantic Guidance Network for Remote Sensing Images Change Detection
    Cui, Binge
    Liu, Chenglong
    Li, Haojie
    Yu, Jianzhi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1827 - 1840