Controlled Protein Activities with Viral Proteases, Antiviral Peptides, and Antiviral Drugs

被引:5
作者
Tague, Elliot P. [1 ,2 ]
McMahan, Jeffrey B. [1 ,2 ]
Tague, Nathan [1 ,2 ]
Dunlop, Mary J. [1 ,2 ]
Ngo, John T. [1 ,2 ]
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Biol Design Ctr, Boston, MA 02215 USA
关键词
CRE RECOMBINASE; DNA-BINDING; INHIBITION; CELLS;
D O I
10.1021/acschembio.3c00138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chemical control of protein activity is a powerful tool for scientific study, synthetic biology, and cell therapy; however, for broad use, effective chemical inducer systems must minimally crosstalk with endogenous processes and exhibit desirable drug delivery properties. Accordingly, the drug-controllable proteolytic activity of hepatitis C cis-protease NS3 and its associated antiviral drugs have been used to regulate protein activity and gene modulation. These tools advanta-geously exploit non-eukaryotic and non-prokaryotic proteins and clinically approved inhibitors. Here, we expand the toolkit by utilizing catalytically inactive NS3 protease as a high affinity binder to genetically encoded, antiviral peptides. Through our approach, we create NS3-peptide complexes that can be displaced by FDA-approved drugs to modulate transcription, cell signaling, and split-protein complementa-tion. With our developed system, we invented a new mechanism to allosterically regulate Cre recombinase. Allosteric Cre regulation with NS3 ligands enables orthogonal recombination tools in eukaryotic cells and functions in divergent organisms to control prokaryotic recombinase activity.
引用
收藏
页码:1228 / 1236
页数:9
相关论文
共 38 条
[1]  
Boncompain G, 2012, NAT METHODS, V9, P493, DOI [10.1038/NMETH.1928, 10.1038/nmeth.1928]
[2]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/nmeth.3312, 10.1038/NMETH.3312]
[3]   A Chemically Disrupted Proximity System for Controlling Dynamic Cellular Processes [J].
Cunningham-Bryant, Daniel ;
Dieter, Emily M. ;
Foight, Glenna W. ;
Rose, John C. ;
Loutey, Dana E. ;
Maly, Dustin J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (08) :3352-3355
[4]   Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations [J].
de Wispelaere, Melissanne ;
Du, Guangyan ;
Donovan, Katherine A. ;
Zhang, Tinghu ;
Eleuteri, Nicholas A. ;
Yuan, Jingting C. ;
Kalabathula, Joann ;
Nowak, Radoslaw P. ;
Fischer, Eric S. ;
Gray, Nathanael S. ;
Yang, Priscilla L. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Large-scale mapping and mutagenesis of human transcriptional effector domains [J].
DelRosso, Nicole ;
Tycko, Josh ;
Suzuki, Peter ;
Andrews, Cecelia ;
Mukund, Adi ;
Liongson, Ivan ;
Ludwig, Connor ;
Spees, Kaitlyn ;
Fordyce, Polly ;
Bassik, Michael C. ;
Bintu, Lacramioara .
NATURE, 2023, 616 (7956) :365-+
[6]   A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations [J].
Dickinson, Bryan C. ;
Packer, Michael S. ;
Badran, Ahmed H. ;
Liu, David R. .
NATURE COMMUNICATIONS, 2014, 5
[7]   A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch [J].
Duplus-Bottin, Helene ;
Spichty, Martin ;
Triqueneaux, Gerard ;
Place, Christophe ;
Mangeot, Philippe Emmanuel ;
Ohlmann, Theophile ;
Vittoz, Franck ;
Yvert, Gael .
ELIFE, 2021, 10 :1-52
[8]   Mutants of Cre recombinase with improved accuracy [J].
Eroshenko, Nikolai ;
Church, George M. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Multi-input chemical control of protein dimerization for programming graded cellular responses [J].
Foight, Glenna Wink ;
Wang, Zhizhi ;
Wei, Cindy T. ;
Greisen, Per, Jr. ;
Warner, Katrina M. ;
Cunningham-Bryant, Daniel ;
Park, Keunwan ;
Brunette, T. J. ;
Sheffler, William ;
Baker, David ;
Maly, Dustin J. .
NATURE BIOTECHNOLOGY, 2019, 37 (10) :1209-+
[10]   Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse [J].
Guo, F ;
Gopaul, DN ;
VanDuyne, GD .
NATURE, 1997, 389 (6646) :40-46