Operando studies reveal active Cu nanograins for CO2 electroreduction

被引:525
作者
Yang, Yao [1 ,2 ,3 ]
Louisia, Sheena [1 ,3 ]
Yu, Sunmoon [3 ,4 ]
Jin, Jianbo [1 ]
Roh, Inwhan [1 ,3 ]
Chen, Chubai [1 ,3 ]
Fonseca Guzman, Maria V. [1 ,3 ]
Feijoo, Julian [1 ,3 ]
Chen, Peng-Cheng [1 ,5 ]
Wang, Hongsen [6 ]
Pollock, Christopher J. [7 ]
Huang, Xin [7 ]
Shao, Yu-Tsun [8 ]
Wang, Cheng [9 ]
Muller, David A. [8 ,10 ]
Abruna, Hector D. [6 ,10 ]
Yang, Peidong [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[6] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY USA
[7] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY USA
[8] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY USA
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[10] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
基金
美国国家科学基金会;
关键词
ELECTROCATALYTIC CONVERSION; CARBON-DIOXIDE; SPECTROSCOPY; MICROSCOPY; OXYGEN;
D O I
10.1038/s41586-022-05540-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals(1). Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive(2). Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques(3-5). Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.
引用
收藏
页码:262 / +
页数:11
相关论文
共 44 条
[1]   The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction [J].
Aran-Ais, Rosa M. ;
Scholten, Fabian ;
Kunze, Sebastian ;
Rizo, Ruben ;
Roldan Cuenya, Beatriz .
NATURE ENERGY, 2020, 5 (04) :317-325
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]   Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires [J].
Cao, Liang ;
Raciti, David ;
Li, Chenyang ;
Livi, Kenneth J. T. ;
Rottmann, Paul F. ;
Hemker, Kevin J. ;
Mueller, Tim ;
Wang, Chao .
ACS CATALYSIS, 2017, 7 (12) :8578-8587
[4]   Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane [J].
Chang, Chia-Jui ;
Lin, Sheng-Chih ;
Chen, Hsiao-Chien ;
Wang, Jiali ;
Zheng, Kai Jen ;
Zhu, Yanping ;
Chen, Hao Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) :12119-12132
[5]   Electron ptychography achieves atomic-resolution limits set by lattice vibrations [J].
Chen, Zhen ;
Jiang, Yi ;
Shao, Yu-Tsun ;
Holtz, Megan E. ;
Odstrcil, Michal ;
Guizar-Sicairos, Manuel ;
Hanke, Isabelle ;
Ganschow, Steffen ;
Schlom, Darrell G. ;
Muller, David A. .
SCIENCE, 2021, 372 (6544) :826-+
[6]   Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction [J].
Eilert, Andre ;
Cavalca, Filippo ;
Roberts, F. Sloan ;
Osterwalder, Juerg ;
Liu, Chang ;
Favaro, Marco ;
Crumlin, Ethan J. ;
Ogasawara, Hirohito ;
Friebel, Daniel ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :285-290
[7]   A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
ACS CENTRAL SCIENCE, 2016, 2 (03) :169-174
[8]   Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction [J].
Fields, Meredith ;
Hong, Xin ;
Norskov, Jens K. ;
Chan, Karen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28) :16209-16215
[9]   Scatter: software for the analysis of nano- and mesoscale small-angle scattering [J].
Foerster, S. ;
Apostol, L. ;
Bras, W. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2010, 43 :639-646
[10]   Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO2 on Copper? [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03) :601-606