共 44 条
Operando studies reveal active Cu nanograins for CO2 electroreduction
被引:525
作者:
Yang, Yao
[1
,2
,3
]
Louisia, Sheena
[1
,3
]
Yu, Sunmoon
[3
,4
]
Jin, Jianbo
[1
]
Roh, Inwhan
[1
,3
]
Chen, Chubai
[1
,3
]
Fonseca Guzman, Maria V.
[1
,3
]
Feijoo, Julian
[1
,3
]
Chen, Peng-Cheng
[1
,5
]
Wang, Hongsen
[6
]
Pollock, Christopher J.
[7
]
Huang, Xin
[7
]
Shao, Yu-Tsun
[8
]
Wang, Cheng
[9
]
Muller, David A.
[8
,10
]
Abruna, Hector D.
[6
,10
]
Yang, Peidong
[1
,3
,4
,5
]
机构:
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA USA
[3] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[5] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[6] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY USA
[7] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY USA
[8] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY USA
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[10] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY USA
来源:
基金:
美国国家科学基金会;
关键词:
ELECTROCATALYTIC CONVERSION;
CARBON-DIOXIDE;
SPECTROSCOPY;
MICROSCOPY;
OXYGEN;
D O I:
10.1038/s41586-022-05540-0
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals(1). Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive(2). Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques(3-5). Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C-C coupling. Quantitative structure-activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions.
引用
收藏
页码:262 / +
页数:11
相关论文