Spectral multipliers and wave propagation for Hamiltonians with a scalar potential

被引:0
作者
Beceanu, Marius [1 ]
Goldberg, Michael [2 ]
机构
[1] SUNY Albany, Math & Stat Dept, 1400 Washington Ave, Albany, NY 12222 USA
[2] Univ Cincinnati, Dept Math Sci, 2815 Commons Way, Cincinnati, OH 45221 USA
关键词
Spectral multipliers; Scalar potential; Strichartz estimates; Weak-type estimates; SCHRODINGER-OPERATORS; EQUATION; ABSENCE;
D O I
10.1016/j.jfa.2023.110300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend several fundamental estimates regarding spectral multipliers for the free Laplacian on R3 to the case of perturbed Hamiltonians of the form -Delta + V, where V is a scalar real-valued potential. In this paper, we prove resolvent estimates, a dispersive bound for the perturbed wave propagator, Mihlin multiplier and fractional integration bounds, and the full range of wave equation Strichartz estimates, under optimal or almost optimal scaling-invariant conditions on the potential and on the spectral multipliers themselves. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 18 条
[1]  
[Anonymous], 1975, ANN SCUOLA NORM-SCI
[3]   STRUCTURE FORMULAS FOR WAVE OPERATORS [J].
Beceanu, M. ;
Schlag, W. .
AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (03) :751-807
[4]   STRUCTURE OF WAVE OPERATORS FOR A SCALING-CRITICAL CLASS OF POTENTIALS [J].
Beceanu, Marius .
AMERICAN JOURNAL OF MATHEMATICS, 2014, 136 (02) :255-308
[5]   Strichartz estimates and maximal operators for the wave equation in R3 [J].
Beceanu, Marius ;
Goldberg, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) :1476-1510
[6]   Schrodinger Dispersive Estimates for a Scaling-Critical Class of Potentials [J].
Beceanu, Marius ;
Goldberg, Michael .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (02) :471-481
[7]   NEW ESTIMATES FOR A TIME-DEPENDENT SCHRODINGER EQUATION [J].
Beceanu, Marius .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (03) :417-477
[8]   On the wave equation with a large rough potential [J].
D'ancona, P ;
Pierfelice, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (01) :30-77
[9]  
Goldberg M, 2004, INT MATH RES NOTICES, V2004, P4049
[10]   Dispersive Estimates for Schrodinger Operators with Measure-Valued Potentials in R3 [J].
Goldberg, Michael .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) :2123-2141