Indirect inference approach for parameter estimation of non linear manoeuvring models of a ROV based on model basin trials

被引:0
|
作者
Herrero, Elias Revestido [1 ]
Llata, Jose Ramon [1 ]
Sainz, Jose Joaquin [1 ]
Velasco, Francisco J. [1 ]
Torrijos, Patricia Diaz [2 ]
机构
[1] Univ Cantabria, Dept Tecnol Elect Ingn Sistemas & Automat, Av Castros S-N, Santander 39005, Cantabria, Spain
[2] Inst Nacl Tecn Aerosp INTA, Subdirecc Gen Sistemas Navales, Madrid, Spain
关键词
Non-linear manoeuvring model; indirect inference; ROV; ordinary least squares; UNDERWATER VEHICLE; PLANAR MOTION; IDENTIFICATION; DYNAMICS;
D O I
10.1080/17445302.2023.2275092
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this work, indirect inference (II) techniques are applied to estimate the parameters of a non-linear manoeuvring model of a remotely operated vehicle (ROV). In the application of this method, a set of auxiliary statistics is established in the optimisation process in order to improve the efficiency of the estimated parameters. For the parameter estimation, data from different tests are available, which were carried out with a ROV in the facilities of the Centro de Experiencias Hidrodinamicas del Pardo INTA/CEHIPAR, Madrid. The model obtained is validated by means of graphical and statistical methods with the acquired data and the statistical properties of the estimated parameters are evaluated by means of a Monte Carlo study.
引用
收藏
页码:1676 / 1683
页数:8
相关论文
共 31 条
  • [11] Parameter estimation in nonlinear mixed effect models based on ordinary differential equations: an optimal control approach
    Clairon, Quentin
    Pasin, Chloe
    Balelli, Irene
    Thiebaut, Rodolphe
    Prague, Melanie
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 2975 - 3005
  • [12] State and Parameter Estimation Algorithm for State Space Model Based on Linear Neural Network and Kalman Filter
    Yang, Yuhang
    Shi, Ying
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 2320 - 2324
  • [13] The SPH approach to the process of container filling based on non-linear constitutive models
    Jiang, Tao
    Ouyang, Jie
    Zhang, Lin
    Ren, Jin-Lian
    ACTA MECHANICA SINICA, 2012, 28 (02) : 407 - 418
  • [14] A new approach for modeling hybrid systems based on the minimization of parameter transition in linear time-varying models
    Maruta, Ichiro
    Sugie, Toshiharu
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 1177 - 1182
  • [15] Online model-based redesign of experiments with erratic models: A disturbance estimation approach
    Galvanin, Federico
    Barolo, Massimiliano
    Pannocchia, Gabriele
    Bezzo, Fabrizio
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 42 : 138 - 151
  • [16] PARAMETER ESTIMATION IN A GENERAL STATE SPACE MODEL FROM SHORT OBSERVATION DATA: A SMC BASED APPROACH
    Saha, S.
    Mandal, P. K.
    Bagchi, A.
    Boers, Y.
    Driessen, H.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 41 - +
  • [17] Neural Computing Enhanced Parameter Estimation for Multi-Input and Multi-Output Total Non-Linear Dynamic Models
    Liu, Longlong
    Ma, Di
    Azar, Ahmad Taher
    Zhu, Quanmin
    ENTROPY, 2020, 22 (05)
  • [18] Deadbeat Simultaneous Parameter-State Estimation for Linear Continuous-time Systems: a Kernel-based Approach
    Li, Peng
    Boem, Francesca
    Pin, Gilberto
    Parisini, Thomas
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2493 - 2498
  • [19] A bootstrap-based approach for parameter and polyspectral density estimation of a non-minimum phase ARMA process
    Shanta, Shahnoor
    Kadirkamanathan, Visakan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (03) : 418 - 428
  • [20] A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons
    Vavoulis, Dimitrios V.
    Straub, Volko A.
    Aston, John A. D.
    Feng, Jianfeng
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (03)