Challenges and strategies of formulating low-temperature electrolytes in lithium-ion batteries

被引:54
作者
Qin, Mingsheng [1 ,2 ]
Zeng, Ziqi [1 ]
Cheng, Shijie [1 ]
Xie, Jia [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Elect Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan, Peoples R China
来源
INTERDISCIPLINARY MATERIALS | 2023年 / 2卷 / 02期
基金
中国国家自然科学基金;
关键词
electrolyte; lithium-ion batteries; low temperatures; solvation structures; HIGH-ENERGY DENSITY; GRAPHITE ELECTRODE; ELECTROCHEMICAL PROPERTIES; NONAQUEOUS ELECTROLYTES; GRAPHITE/ELECTROLYTE INTERFACE; CARBONATE ELECTROLYTES; PROPYLENE CARBONATE; ESTER COSOLVENTS; HIGH-PERFORMANCE; CELLS;
D O I
10.1002/idm2.12077
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries (LIBs) have monopolized energy storage markets in modern society. The reliable operation of LIBs at cold condition (<0 degrees C), nevertheless, is inevitably hampered by the sluggish kinetics and parasite reactions, which falls behind the increasing demands for portable electronics and electric vehicles. The electrolyte controls both Li+ transport and interfacial reaction, dictating the low-temperature performance substantially. Therefore, the rational formulation of electrolytes is significant for realizing superior low-temperature performance and broadening application niches of LIBs. Herein, we first discuss the kinetic limitations of low-temperature LIBs, highlighting the importance of electrolyte structure and interfacial chemistry. Then, the advancements for formulating subzero-temperature electrolyte are summarized with in-depth discussions about electrolyte formulation, solvation structure, interfacial chemistry, and low-temperature behaviors. Moreover, some opportunities for lithium metal batteries and the corresponding low-temperature electrolyte are covered. Finally, the major challenges and future perspectives are outlined for low-temperature LIBs.
引用
收藏
页码:308 / 336
页数:29
相关论文
共 50 条
[31]   Anchored Weakly-Solvated Electrolytes for High-Voltage and Low-Temperature Lithium-ion Batteries [J].
Liu, Xu ;
Zhang, Jingwei ;
Yun, Xuanyu ;
Li, Jia ;
Yu, Huaqing ;
Peng, Lianqiang ;
Xi, Zihang ;
Wang, Ruihan ;
Yang, Ling ;
Xie, Wei ;
Chen, Jun ;
Zhao, Qing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (36)
[32]   Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance [J].
Mei, Pan ;
Zhang, Yuan ;
Zhang, Wei .
NANOSCALE, 2023, 15 (03) :987-997
[33]   Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects [J].
Wang, Guan ;
Wang, Guixin ;
Fei, Linfeng ;
Zhao, Lina ;
Zhang, Haitao .
NANO-MICRO LETTERS, 2024, 16 (01)
[34]   A novel framework for low-temperature fast charging of lithium-ion batteries without lithium plating [J].
Huang, Ranjun ;
Wei, Gang ;
Wang, Xueyuan ;
Jiang, Bo ;
Zhu, Jiangong ;
Ji, Chenzhen ;
Chen, Jingan ;
Wei, Xuezhe ;
Dai, Haifeng .
CHEMICAL ENGINEERING JOURNAL, 2024, 497
[35]   40 Years of Low-Temperature Electrolytes for Rechargeable Lithium Batteries [J].
Li, Zeheng ;
Yao, Yu-Xing ;
Sun, Shuo ;
Jin, Cheng-Bin ;
Yao, Nan ;
Yan, Chong ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (37)
[36]   Lithium-ion batteries for low-temperature applications: Limiting factors and solutions [J].
Belgibayeva, Ayaulym ;
Rakhmetova, Aiym ;
Rakhatkyzy, Makpal ;
Kairova, Meruyert ;
Mukushev, Ilyas ;
Issatayev, Nurbolat ;
Kalimuldina, Gulnur ;
Nurpeissova, Arailym ;
Sun, Yang-Kook ;
Bakenov, Zhumabay .
JOURNAL OF POWER SOURCES, 2023, 557
[37]   Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries [J].
Sun, Bingxiang ;
Qi, Xianjie ;
Song, Donglin ;
Ruan, Haijun .
ENERGIES, 2023, 16 (20)
[38]   The effect of low-temperature starting on the thermal safety of lithium-ion batteries [J].
Ma, Wenbin ;
Yang, Xiaoyu ;
Tao, Xin ;
Xie, Song .
ENERGY, 2024, 311
[39]   Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles [J].
Zhan, Jincheng ;
Deng, Yifei ;
Ren, Jiaoyi ;
Gao, Yaohui ;
Liu, Yuang ;
Rao, Shun ;
Li, Weifeng ;
Gao, Zhenhai .
BATTERIES-BASEL, 2023, 9 (07)
[40]   Nanohybrid electrolytes for high-energy lithium-ion batteries: recent advances and future challenges [J].
Shi, Yang ;
Tan, Darren ;
Li, Mingqian ;
Chen, Zheng .
NANOTECHNOLOGY, 2019, 30 (30)