Genomic selection for target traits in the Australian lentil breeding program

被引:5
作者
Gebremedhin, Alem [1 ]
Li, Yongjun [1 ]
Shunmugam, Arun S. K. [2 ]
Sudheesh, Shimna [1 ]
Valipour-Kahrood, Hossein [1 ]
Hayden, Matthew J. [1 ,3 ]
Rosewarne, Garry M. [2 ]
Kaur, Sukhjiwan [1 ,3 ]
机构
[1] AgriBio, Ctr AgriBioscience, Agr Victoria, Bundoora, Vic, Australia
[2] Agr Victoria, Grains Innovat Pk, Horsham, Vic, Australia
[3] Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic, Australia
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 14卷
关键词
BayesR; multi-environmental trial; genetic gain; genomic selection; lentil; GENOTYPE IMPUTATION; PLANT; PREDICTION; ASSOCIATION; TOLERANCE; DISCOVERY; FRAMEWORK; YIELD; GAIN; SIZE;
D O I
10.3389/fpls.2023.1284781
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genomic selection (GS) uses associations between markers and phenotypes to predict the breeding values of individuals. It can be applied early in the breeding cycle to reduce the cross-to-cross generation interval and thereby increase genetic gain per unit of time. The development of cost-effective, high-throughput genotyping platforms has revolutionized plant breeding programs by enabling the implementation of GS at the scale required to achieve impact. As a result, GS is becoming routine in plant breeding, even in minor crops such as pulses. Here we examined 2,081 breeding lines from Agriculture Victoria's national lentil breeding program for a range of target traits including grain yield, ascochyta blight resistance, botrytis grey mould resistance, salinity and boron stress tolerance, 100-grain weight, seed size index and protein content. A broad range of narrow-sense heritabilities was observed across these traits (0.24-0.66). Genomic prediction models were developed based on 64,781 genome-wide SNPs using Bayesian methodology and genomic estimated breeding values (GEBVs) were calculated. Forward cross-validation was applied to examine the prediction accuracy of GS for these targeted traits. The accuracy of GEBVs was consistently higher (0.34-0.83) than BLUP estimated breeding values (EBVs) (0.22-0.54), indicating a higher expected rate of genetic gain with GS. GS-led parental selection using early generation breeding materials also resulted in higher genetic gain compared to BLUP-based selection performed using later generation breeding lines. Our results show that implementing GS in lentil breeding will fast track the development of high-yielding cultivars with increased resistance to biotic and abiotic stresses, as well as improved seed quality traits.
引用
收藏
页数:13
相关论文
共 74 条
[11]   Breeding Schemes: What Are They, How to Formalize Them, and How to Improve Them? [J].
Covarrubias-Pazaran, Giovanny ;
Gebeyehu, Zelalem ;
Gemenet, Dorcus ;
Werner, Christian ;
Labroo, Marlee ;
Sirak, Solomon ;
Coaldrake, Peter ;
Rabbi, Ismail ;
Kayondo, Siraj Ismail ;
Parkes, Elizabeth ;
Kanju, Edward ;
Mbanjo, Edwige Gaby Nkouaya ;
Agbona, Afolabi ;
Kulakow, Peter ;
Quinn, Michael ;
Debaene, Jan .
FRONTIERS IN PLANT SCIENCE, 2022, 12
[12]   Genomic Selection in Plant Breeding: Methods, Models, and Perspectives [J].
Crossa, Jose ;
Perez-Rodriguez, Paulino ;
Cuevas, Jaime ;
Montesinos-Lopez, Osval ;
Jarquin, Diego ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Gonzalez-Camacho, Juan M. ;
Perez-Elizalde, Sergio ;
Beyene, Yoseph ;
Dreisigacker, Susanne ;
Singh, Ravi ;
Zhang, Xuecai ;
Gowda, Manje ;
Roorkiwal, Manish ;
Rutkoski, Jessica ;
Varshney, Rajeev K. .
TRENDS IN PLANT SCIENCE, 2017, 22 (11) :961-975
[13]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[14]   Next-generation genotype imputation service and methods [J].
Das, Sayantan ;
Forer, Lukas ;
Schoenherr, Sebastian ;
Sidore, Carlo ;
Locke, Adam E. ;
Kwong, Alan ;
Vrieze, Scott I. ;
Chew, Emily Y. ;
Levy, Shawn ;
McGue, Matt ;
Schlessinger, David ;
Stambolian, Dwight ;
Loh, Po-Ru ;
Iacono, William G. ;
Swaroop, Anand ;
Scott, Laura J. ;
Cucca, Francesco ;
Kronenberg, Florian ;
Boehnke, Michael ;
Abecasis, Goncalo R. ;
Fuchsberger, Christian .
NATURE GENETICS, 2016, 48 (10) :1284-1287
[15]   Changes in Aggressiveness of the Ascochyta lentis Population in Southern Australia [J].
Davidson, Jennifer ;
Smetham, Gabriel ;
Russ, Michelle H. ;
McMurray, Larn ;
Rodda, Matthew ;
Krysinska-Kaczmarek, Marzena ;
Ford, Rebecca .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[16]   The use of unbalanced historical data for genomic selection in an international wheat breeding program [J].
Dawson, Julie C. ;
Endelman, Jeffrey B. ;
Heslot, Nicolas ;
Crossa, Jose ;
Poland, Jesse ;
Dreisigacker, Susanne ;
Manes, Yann ;
Sorrells, Mark E. ;
Jannink, Jean-Luc .
FIELD CROPS RESEARCH, 2013, 154 :12-22
[17]   Genetic Architecture and Genomic Prediction of Cooking Time in Common Bean (Phaseolus vulgaris L.) [J].
Diaz, Santiago ;
Ariza-Suarez, Daniel ;
Ramdeen, Raisa ;
Aparicio, Johan ;
Arunachalam, Nirmala ;
Hernandez, Carlos ;
Diaz, Harold ;
Ruiz, Henry ;
Piepho, Hans-Peter ;
Raatz, Bodo .
FRONTIERS IN PLANT SCIENCE, 2021, 11
[18]   Development and Application of Image-Based High-Throughput Phenotyping Methodology for Salt Tolerance in Lentils [J].
Dissanayake, Ruwani ;
Kahrood, Hossein V. ;
Dimech, Adam M. ;
Noy, Dianne M. ;
Rosewarne, Garry M. ;
Smith, Kevin F. ;
Cogan, Noel O. I. ;
Kaur, Sukhjiwan .
AGRONOMY-BASEL, 2020, 10 (12)
[19]   Spatial analysis enhances modelling of a wide variety of traits in forest genetic trials [J].
Dutkowski, Gregory W. ;
Silva, Jocio Costa e ;
Gilmour, Arthur R. ;
Wellendorf, Hubert ;
Aguiar, Alexandre .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2006, 36 (07) :1851-1870
[20]  
Dutta A., 2022, ENV CHALL, V7, DOI [DOI 10.1016/J.ENVC.2022.100479, 10.1016/J.ENVC.2022.100479]