Fractal Mellin transform and non-local derivatives

被引:9
作者
Golmankhaneh, Alireza Khalili [1 ]
Welch, Kerri [2 ]
Serpa, Cristina [3 ,4 ]
Jorgensen, Palle E. T. [5 ]
机构
[1] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh 63896, Iran
[2] Calif Inst Integral Studies, San Francisco, CA 94103 USA
[3] Inst Super Engn Lisboa ISEL, Inst Politecn Lisboa, Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Ctr Matemat Aplicacoes Fundamentais & Invest Opera, Lisbon, Portugal
[5] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
Fractal local Mellin transform; fractal non-local transform; fractal non-local derivatives; REAL LINE; CALCULUS; SUBSETS;
D O I
10.1515/gmj-2023-2094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a comparison between the fractal calculus of fractal sets and fractal curves. There are introduced the analogues of the Riemann-Liouville and Caputo integrals and derivatives for fractal curves, which are non-local derivatives. Moreover, the concepts analogous to the fractional Laplace operator to address fractal non-local differential equations on fractal curves are defined. Additionally, in the paper it is introduced the fractal local Mellin transform and fractal non-local transform as tools for solving fractal differential equations. The results are supported with tables and examples to demonstrate the findings.
引用
收藏
页码:423 / 436
页数:14
相关论文
共 58 条
[1]   Solving fractal differential equations via fractal Laplace transforms [J].
Ali, Karmina Kamal ;
Golmankhaneh, Alireza Khalili ;
Yilmazer, Resat ;
Abdullah, Milad Ashqi .
JOURNAL OF APPLIED ANALYSIS, 2022, 28 (02) :237-250
[2]   A Multifractal Formalism for Hewitt-Stromberg Measures [J].
Attia, Najmeddine ;
Selmi, Bilel .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) :825-862
[3]   Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua [J].
Balankin, Alexander S. ;
Mena, Baltasar .
CHAOS SOLITONS & FRACTALS, 2023, 168
[4]   Dimensional crossover in the nearest-neighbor statistics of random points in a quasi-low-dimensional system [J].
Balankin, Alexander S. ;
Martinez-Cruz, M. A. ;
Susarrey-Huerta, O. .
MODERN PHYSICS LETTERS B, 2023, 37 (06)
[5]   INHERENT FEATURES OF FRACTAL SETS AND KEY ATTRIBUTES OF FRACTAL MODELS [J].
Balankin, Alexander S. ;
Ortiz, Julian Patino ;
Ortiz, Miguel Patino .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (04)
[6]   Noise analysis of electrical circuits on fractal set [J].
Banchuin, Rawid .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (05) :1464-1490
[7]   Nonlocal fractal calculus based analyses of electrical circuits on fractal set [J].
Banchuin, Rawid .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (01) :528-549
[8]  
Banerjee S., 2021, UNDERST COMPLEX SYST
[9]  
Banerjee S., 2022, MATH MODELING MODELS
[10]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623