Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease

被引:4
作者
Gudmundson, Aaron T. [1 ,2 ]
Koo, Annie [3 ]
Virovka, Anna [3 ]
Amirault, Alyssa L. [3 ]
Soo, Madelene [3 ]
Cho, Jocelyn H. [3 ]
Oeltzschner, Georg [1 ,2 ]
Edden, Richard A. E. [1 ,2 ]
Stark, Craig E. L. [3 ,4 ]
机构
[1] Johns Hopkins Univ, Russell H Morgan Dept Radiol & Radiol Sci, Sch Med, Baltimore, MD USA
[2] Kennedy Krieger Inst, FM Kirby Res Ctr Funct Brain Imaging, Baltimore, MD USA
[3] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA USA
[4] Univ Calif Irvine, Dept Neurobiol & Behav, 1400 Biol Sci 3, Irvine, CA 92697 USA
关键词
Human brain; Database; Meta-analysis; Proton MRS; In vivo; Simulation1; N-ACETYL-ASPARTATE; T-2; RELAXATION-TIMES; MILD COGNITIVE IMPAIRMENT; PROTON MR SPECTROSCOPY; GAMMA-AMINOBUTYRIC-ACID; CREATINE PLUS PHOSPHOCREATINE; MAJOR DEPRESSIVE DISORDER; WHITE-MATTER INTEGRITY; SPIN-SPIN RELAXATION; TRANSVERSE RELAXATION;
D O I
10.1016/j.ab.2023.115227
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simula-tions must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta -Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expec-tation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Changes in cerebral metabolites in type 2 diabetes mellitus: A meta-analysis of proton magnetic resonance spectroscopy
    Wu, Guang-yao
    Zhang, Qing
    Wu, Jian-lin
    Li, Jing
    Tan, Yang
    Qiu, Tai-chun
    Zhao, Jiao
    [J]. JOURNAL OF CLINICAL NEUROSCIENCE, 2017, 45 : 9 - 13
  • [32] Review of 1H magnetic resonance spectroscopy findings in major depressive disorder:: A meta-analysis
    Yildiz-Yesiloglu, Aysegul
    Ankerst, Donna Pauler
    [J]. PSYCHIATRY RESEARCH-NEUROIMAGING, 2006, 147 (01) : 1 - 25
  • [33] Brain functional activity of swallowing: A meta-analysis of functional magnetic resonance imaging
    Huang, Haiyue
    Yan, Jin
    Lin, Yinghong
    Lin, Jiaxin
    Hu, Huimin
    Wei, Linxuan
    Zhang, Xiwen
    Zhang, Qingqing
    Liang, Shengxiang
    [J]. JOURNAL OF ORAL REHABILITATION, 2023, 50 (02) : 165 - 175
  • [34] Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder
    McDonald, C
    Zanelli, J
    Rabe-Hesketh, S
    Ellison-Wright, I
    Sham, P
    Kalidindi, S
    Murray, RM
    Kennedy, N
    [J]. BIOLOGICAL PSYCHIATRY, 2004, 56 (06) : 411 - 417
  • [35] Measurement of Brain Metabolites by 1H Magnetic Resonance Spectroscopy in Patients with Schizophrenia: A Systematic Review and Meta-Analysis
    R Grant Steen
    Robert M Hamer
    Jeffrey A Lieberman
    [J]. Neuropsychopharmacology, 2005, 30 : 1949 - 1962
  • [36] Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis
    Thayyil, Sudhin
    Chandrasekaran, Manigandan
    Taylor, Andrew
    Bainbridge, Alan
    Cady, Ernest B.
    Chong, W. K. Kling
    Murad, Shahed
    Omar, Rumana Z.
    Robertson, Nicola J.
    [J]. PEDIATRICS, 2010, 125 (02) : E382 - E395
  • [37] ZCHSound: Open-Source ZJU Paediatric Heart Sound Database With Congenital Heart Disease
    Jia, Weijie
    Wang, Yunyan
    Chen, Renwei
    Ye, Jingjing
    Li, Die
    Yin, Fei
    Yu, Jin
    Chen, Jiajia
    Shu, Qiang
    Xu, Weize
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (08) : 2278 - 2286
  • [38] Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-analysis of 1H-magnetic resonance spectroscopy studies
    Nakahara, Tomomi
    Tsugawa, Sakiko
    Noda, Yoshihiro
    Ueno, Fumihiko
    Honda, Shiori
    Kinjo, Megumi
    Segawa, Hikari
    Hondo, Nobuaki
    Mori, Yukino
    Watanabe, Honoka
    Nakahara, Kazuho
    Yoshida, Kazunari
    Wada, Masataka
    Tarumi, Ryosuke
    Iwata, Yusuke
    Plitman, Eric
    Moriguchi, Sho
    de La Fuente-Sandoval, Camilo
    Uchida, Hiroyuki
    Mimura, Masaru
    Graff-Guerrero, Ariel
    Nakajima, Shinichiro
    [J]. MOLECULAR PSYCHIATRY, 2022, 27 (01) : 744 - 757
  • [39] Prostate Cancer Magnetic Resonance Spectroscopy Imaging at 1.5 and 3.0 T: A Meta-Analysis
    Chen, Huiyou
    Sutedjo, Janesya
    Wang, Liwei
    Yin, Xindao
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2016, 15 (04) : 625 - 631
  • [40] Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy
    Boumezbeur, Fawzi
    Mason, Graeme F.
    de Graaf, Robin A.
    Behar, Kevin L.
    Cline, Gary W.
    Shulman, Gerald I.
    Rothman, Douglas L.
    Petersen, Kitt F.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2010, 30 (01) : 211 - 221