Development of a model to predict combined antidepressant medication and psychotherapy treatment response for depression among veterans

被引:1
作者
Bossarte, Robert M. [1 ,2 ]
Ross, Eric L. [3 ,4 ,5 ]
Liu, Howard [2 ,6 ]
Turner, Brett [2 ,6 ,7 ]
Bryant, Corey [8 ]
Zainal, Nur Hani [6 ]
Puac-Polanco, Victor [9 ]
Ziobrowski, Hannah N. [10 ]
Cui, Ruifeng [11 ,12 ]
Cipriani, Andrea [13 ]
Furukawa, Toshiaki A. [14 ]
Leung, Lucinda B. [15 ,16 ]
Joormann, Jutta [17 ]
Nierenberg, Andrew A. [5 ,18 ]
Oslin, David W. [19 ,20 ]
Pigeon, Wilfred R. [2 ,21 ]
Post, Edward P. [7 ,22 ]
Zaslavsky, Alan M. [6 ]
Zubizarreta, Jose R. [6 ,23 ,24 ]
Luedtke, Alex [25 ,26 ]
Kennedy, Chris J. [4 ,5 ]
Kessler, Ronald C. [6 ]
机构
[1] Univ S Florida, Dept Psychiat & Behav Neurosci, Tampa, FL USA
[2] Canandaigua VA Med Ctr, Ctr Excellence Suicide Prevent, Canandaigua, NY USA
[3] McLean Hosp, Dept Psychiat, Belmont, MA USA
[4] Massachusetts Gen Hosp, Dept Psychiat, Boston, MA USA
[5] Harvard Med Sch, Dept Psychiat, Boston, MA USA
[6] Harvard Med Sch, Dept Hlth Care Policy, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Boston, MA USA
[8] VA Ann Arbor, Ctr Clin Management Res, Ann Arbor, VA USA
[9] SUNY Downstate Hlth Sci Univ, Dept Hlth Policy & Management, Brooklyn, NY USA
[10] Brown Univ, Dept Epidemiol, Sch Publ Hlth, Providence, RI USA
[11] VA Pittsburgh Hlth Care Syst, Dept Vet Affairs, VISN Mental Illness Res Educ & Clin Ctr, Pittsburgh, PA USA
[12] Univ Pittsburgh, Dept Psychiat, Sch Med, Pittsburgh, PA USA
[13] Univ Oxford, Dept Psychiat, Oxford, England
[14] Kyoto Univ, Sch Publ Hlth, Dept Hlth Promot & Human Behav, Grad Sch Med, Kyoto, Japan
[15] VA Greater Angeles Healthcare Syst, Ctr Study Healthcare Innovat Implementat & Policy, Los Angeles, CA USA
[16] UCLA David Geffen Sch Med, Div Gen Internal Med & Hlth Serv Res, Los Angeles, CA USA
[17] Yale Univ, Dept Psychol, New Haven, CT USA
[18] Massachusetts Gen Hosp, Dept Psychiat, Dauten Family Ctr Bipolar Treatment Innovat, Boston, MA USA
[19] Corporal Michael J Crescenz VA Med Ctr, VISN Mental Illness Res Educ & Clin Ctr, Philadelphia, PA USA
[20] Univ Pennsylvania, Perelman Sch Med, Philadelphia, PA USA
[21] Univ Rochester, Dept Psychiat, Med Ctr, Rochester, NY USA
[22] Univ Michigan, Dept Med, Med Sch, Ann Arbor, MI USA
[23] Harvard Univ, Dept Stat, Cambridge, MA USA
[24] Harvard Univ, Dept Biostat, Cambridge, MA USA
[25] Univ Washington, Dept Stat, Seattle, WA USA
[26] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
Antidepressant medication; Clinical decision support; Depression; Machine learning; Treatment response; Veterans Health Administration; SEROTONIN REUPTAKE INHIBITORS; COGNITIVE-BEHAVIORAL THERAPY; MAJOR DEPRESSION; PRIMARY-CARE; LONG-TERM; PHARMACOTHERAPY; METAANALYSIS; SEVERITY; OUTCOMES; MULTICENTER;
D O I
10.1016/j.jad.2023.01.082
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Although research shows that more depressed patients respond to combined antidepressants (ADM) and psychotherapy than either alone, many patients do not respond even to combined treatment. A reliable prediction model for this could help treatment decision-making. We attempted to create such a model using machine learning methods among patients in the US Veterans Health Administration (VHA). Methods: A 2018-2020 national sample of VHA patients beginning combined depression treatment completed self-report assessments at baseline and 3 months (n = 658). A learning model was developed using baseline selfreport, administrative, and geospatial data to predict 3-month treatment response defined by reductions in the Quick Inventory of Depression Symptomatology Self-Report and/or in the Sheehan Disability Scale. The model was developed in a 70 % training sample and tested in the remaining 30 % test sample. Results: 30.0 % of patients responded to treatment. The prediction model had a test sample AUC-ROC of 0.657. A strong gradient was found in probability of treatment response from 52.7 % in the highest predicted quintile to 14.4 % in the lowest predicted quintile. The most important predictors were episode characteristics (symptoms, comorbidities, history), personality/psychological resilience, recent stressors, and treatment characteristics. Limitations: Restrictions in sample definition, a low recruitment rate, and reliance on patient self-report rather than clinician assessments to determine treatment response limited the generalizability of results. Conclusions: A machine learning model could help depressed patients and providers predict likely response to combined ADM-psychotherapy. Parallel information about potential harms and costs of alternative treatments would be needed, though, to inform optimal treatment selection.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 68 条
[1]   Direct and Indirect Cost Burden and Change of Employment Status in Treatment-Resistant Depression: A Matched-Cohort Study Using a US Commercial Claims Database [J].
Amos, Tony B. ;
Tandon, Neeta ;
Lefebvre, Patrick ;
Pilon, Dominic ;
Kamstra, Rhiannon L. ;
Pivneva, Irina ;
Greenberg, Paul E. .
JOURNAL OF CLINICAL PSYCHIATRY, 2018, 79 (02)
[2]  
[Anonymous], 2000, Am J Psychiatry, V157, P1
[3]  
[Anonymous], 2005, SAS 913
[4]  
[Anonymous], 2009, Depression in adults: Recognition and management
[5]   The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
STATISTICS IN MEDICINE, 2019, 38 (21) :4051-4065
[6]   Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers [J].
Austin, Peter C. ;
Steyerberg, Ewout W. .
STATISTICS IN MEDICINE, 2014, 33 (03) :517-535
[7]   The clinical effectiveness of using a predictive algorithm to guide antidepressant treatment in primary care (PReDicT): an open-label, randomised controlled trial [J].
Browning, Michael ;
Bilderbeck, Amy C. ;
Dias, Rebecca ;
Dourish, Colin T. ;
Kingslake, Jonathan ;
Deckert, Juergen ;
Goodwin, Guy M. ;
Gorwood, Philip ;
Guo, Boliang ;
Harmer, Catherine J. ;
Morriss, Richard ;
Reif, Andreas ;
Ruhe, Henricus G. ;
van Schaik, Anneke ;
Simon, Judit ;
Sola, Victor Perez ;
Veltman, Dick J. ;
Elices, Matilde ;
Lever, Anne G. ;
Menke, Andreas ;
Scanferla, Elisabetta ;
Staeblein, Michael ;
Dawson, Gerard R. .
NEUROPSYCHOPHARMACOLOGY, 2021, 46 (07) :1307-1314
[8]   The contribution of depressive 'disorder characteristics' to determinations of prognosis for adults with depression: an individual patient data meta-analysis [J].
Buckman, Joshua E. J. ;
Saunders, Rob ;
Cohen, Zachary D. ;
Barnett, Phoebe ;
Clarke, Katherine ;
Ambler, Gareth ;
DeRubeis, Robert J. ;
Gilbody, Simon ;
Hollon, Steven D. ;
Kendrick, Tony ;
Watkins, Edward ;
Wiles, Nicola ;
Kessler, David ;
Richards, David ;
Sharp, Deborah ;
Brabyn, Sally ;
Littlewood, Elizabeth ;
Salisbury, Chris ;
White, Ian R. ;
Lewis, Glyn ;
Pilling, Stephen .
PSYCHOLOGICAL MEDICINE, 2021, 51 (07) :1068-1081
[9]   BART: BAYESIAN ADDITIVE REGRESSION TREES [J].
Chipman, Hugh A. ;
George, Edward I. ;
McCulloch, Robert E. .
ANNALS OF APPLIED STATISTICS, 2010, 4 (01) :266-298
[10]   Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis [J].
Cipriani, Andrea ;
Furukawa, Tashi A. ;
Salanti, Georgia ;
Chaimani, Anna ;
Atkinson, Lavren Z. ;
Ogawa, Yusuke ;
Levcht, Stefan ;
Ruhe, Henricus G. ;
Turner, Erick H. ;
Higgins, Julian P. T. ;
Egger, Matthias ;
Takeshima, Nozomi ;
Hayasaka, Yu ;
Imai, Hissei ;
Shinohara, Kiyomi ;
Tajika, Aran ;
Ioannidis, John P. A. ;
Geddes, Jahn R. .
LANCET, 2018, 391 (10128) :1357-1366