The signed graphs with all but at most three eigenvalues equal to-1

被引:0
作者
Wang, Yongang [1 ]
Li, Dan [2 ]
Lin, Huiqiu [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Signed graph; Multiplicity; RANK;
D O I
10.1016/j.laa.2023.01.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenvalues of a signed graph are the eigenvalues of its adjacency matrix. In this paper, we completely characterize the signed graphs for which the adjacency matrices have at most three eigenvalues unequal to -1.(c) 2023 Published by Elsevier Inc.
引用
收藏
页码:314 / 323
页数:10
相关论文
共 10 条
[1]   SPECTRAL CRITERION FOR CYCLE BALANCE IN NETWORKS [J].
ACHARYA, BD .
JOURNAL OF GRAPH THEORY, 1980, 4 (01) :1-11
[2]   On the eigenvalues of signed complete graphs [J].
Akbari, S. ;
Dalvandi, S. ;
Heydari, F. ;
Maghasedi, M. .
LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) :433-441
[3]  
Belardo Francesco, 2018, Art Discrete Appl. Math., V1, P2
[4]   Spectral characterizations of almost complete graphs [J].
Camara, Marc ;
Haemers, Willem H. .
DISCRETE APPLIED MATHEMATICS, 2014, 176 :19-23
[5]  
Haemers W, 2021, Arxiv, DOI arXiv:2109.02522
[6]   On signed graphs with just two distinct adjacency eigenvalues [J].
Hou, Yaoping ;
Tang, Zikai ;
Wang, Dijian .
DISCRETE MATHEMATICS, 2019, 342 (12)
[7]   On the Laplacian eigenvalues of signed graphs [J].
Hou, YP ;
Li, JS ;
Pan, YL .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01) :21-30
[8]   A characterization of signed planar graphs with rank at most 4 [J].
Tian, Fenglei ;
Wang, Dengyin ;
Zhu, Min .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (05) :807-817
[9]   Which graphs are determined by their spectrum? [J].
van Dam, ER ;
Haemers, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 :241-272
[10]   On the rank of weighted graphs [J].
Zhang, W. J. ;
Yu, A. M. .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) :635-652