DRA-net: A new deep learning framwork for non-intrusive load disaggregation
被引:1
作者:
Yu, Fang
论文数: 0引用数: 0
h-index: 0
机构:
China Elect Power Res Inst, Nanjing, Peoples R ChinaChina Elect Power Res Inst, Nanjing, Peoples R China
Yu, Fang
[1
]
Wang, Zhihua
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Shanghai Municipal Elect Power Co, Shanghai, Peoples R ChinaChina Elect Power Res Inst, Nanjing, Peoples R China
Wang, Zhihua
[2
]
Zhang, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol, Nanjing, Peoples R ChinaChina Elect Power Res Inst, Nanjing, Peoples R China
Zhang, Xiaodong
[3
]
Xia, Min
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol, Nanjing, Peoples R ChinaChina Elect Power Res Inst, Nanjing, Peoples R China
Xia, Min
[3
]
机构:
[1] China Elect Power Res Inst, Nanjing, Peoples R China
[2] State Grid Shanghai Municipal Elect Power Co, Shanghai, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol, Nanjing, Peoples R China
non-intrusive;
load disaggregation;
deep learning;
feature extraction;
energy efficiency;
residential electricity;
D O I:
10.3389/fenrg.2023.1140685
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
The non-intrusive load decomposition method helps users understand the current situation of electricity consumption and reduce energy consumption. Traditional methods based on deep learning are difficult to identify low usage appliances, and are prone to model degradation leading to insufficient classification capacity. To solve this problem, this paper proposes a dilated residual aggregation network to achieve non-intrusive load decomposition. First, the original power data is processed by difference to enhance the data expression ability. Secondly, the residual structure and dilated convolution are combined to realize the cross layer transmission of load characteristic information, and capture more long sequence content. Then, the feature enhancement module is proposed to recalibrate the local feature mapping, so as to enhance the learning ability of its own network for subtle features. Compared to traditional network models, the null-residual aggregated convolutional network model has the advantages of strong learning capability for fine load features and good generalisation performance, improving the accuracy of load decomposition. The experimental results on several datasets show that the network model has good generalization performance and improves the recognition accuracy of low usage appliances.
机构:
North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
Fan, Wen
;
Liu, Qing
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
Liu, Qing
;
论文数: 引用数:
h-index:
机构:
Ahmadpour, Ali
;
Farkoush, Saeed Gholami
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Elect Engn, Yeungnam, South KoreaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Guo, Yi
;
Xiong, Xuejun
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Xiong, Xuejun
;
Fu, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Fu, Qi
;
Xu, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Xu, Liang
;
Jing, Shi
论文数: 0引用数: 0
h-index: 0
机构:
Power Syst Wide Area Measurement & Control Sichua, Chengdu, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
机构:
North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
Fan, Wen
;
Liu, Qing
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
Liu, Qing
;
论文数: 引用数:
h-index:
机构:
Ahmadpour, Ali
;
Farkoush, Saeed Gholami
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Elect Engn, Yeungnam, South KoreaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Baoding 071003, Peoples R China
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Guo, Yi
;
Xiong, Xuejun
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Xiong, Xuejun
;
Fu, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Fu, Qi
;
Xu, Liang
论文数: 0引用数: 0
h-index: 0
机构:
Xihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China
Xu, Liang
;
Jing, Shi
论文数: 0引用数: 0
h-index: 0
机构:
Power Syst Wide Area Measurement & Control Sichua, Chengdu, Sichuan, Peoples R ChinaXihua Univ, Sch Elect Engn & Elect Informat, Chengdu 610039, Sichuan, Peoples R China