Precision mapping of a silicon test mass birefringence

被引:5
作者
Hamedan, V. Jaberian [1 ]
Adam, A. [1 ]
Blair, C. [1 ]
Ju, L. [1 ]
Zhao, C. [1 ]
机构
[1] Univ Western Australia, ARC Ctr Excellence Gravitat Wave Discovery, Dept Phys, 35 Stirling Highway, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Crystal impurities - Crystal orientation - Gravitational effects - Gravity waves - Silicon - Silicon detectors;
D O I
10.1063/5.0136869
中图分类号
O59 [应用物理学];
学科分类号
摘要
Excellent mechanical and thermal properties of silicon make it a promising material for the test masses in future gravitational wave detectors. However, the birefringence of silicon test masses, due to impurity and residual stress during crystal growth or external stress, can reduce the interference contrast in an interferometer. Using the polarization-modulation approach and a scanning system, we mapped the birefringence of a float zone silicon test mass in the & lang;100 & rang; crystal orientation to assess the suitability of such material for future gravitational wave detectors. Apart from the stress-induced birefringence at the supporting area due to the weight of the test mass, the high resolution birefringence map of the silicon test mass revealed a high birefringence feature in the test mass. At the central 40 mm area, birefringence is in the range of mid 10(-9) to low 10(-8), which satisfy the requirement for future gravitational wave detectors.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]   A cryogenic silicon interferometer for gravitational-wave detection [J].
Adhikari, R. X. ;
Arai, K. ;
Brooks, A. F. ;
Wipf, C. ;
Aguiar, O. ;
Altin, P. ;
Barr, B. ;
Barsotti, L. ;
Bassiri, R. ;
Bell, A. ;
Billingsley, G. ;
Birney, R. ;
Blair, D. ;
Bonilla, E. ;
Briggs, J. ;
Brown, D. D. ;
Byer, R. ;
Cao, H. ;
Constancio, M. ;
Cooper, S. ;
Corbitt, T. ;
Coyne, D. ;
Cumming, A. ;
Daw, E. ;
deRosa, R. ;
Eddolls, G. ;
Eichholz, J. ;
Evans, M. ;
Fejer, M. ;
Ferreira, E. C. ;
Freise, A. ;
Frolov, V. V. ;
Gras, S. ;
Green, A. ;
Grote, H. ;
Gustafson, E. ;
Hall, E. D. ;
Hammond, G. ;
Harms, J. ;
Harry, G. ;
Haughian, K. ;
Heinert, D. ;
Heintze, M. ;
Hellman, F. ;
Hennig, J. ;
Hennig, M. ;
Hild, S. ;
Hough, J. ;
Johnson, W. ;
Karnai, B. .
CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (16)
[3]   Interferometer techniques for gravitational-wave detection [J].
Bond, Charlotte ;
Brown, Daniel ;
Freise, Andreas ;
Strain, Kenneth A. .
LIVING REVIEWS IN RELATIVITY, 2016, 19 :1-221
[4]   Optical anisotropy and strain-induced birefringence in dislocation-free silicon single crystals [J].
Chu, T ;
Yamada, M ;
Donecker, J ;
Rossberg, M ;
Alex, V ;
Riemann, H .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2002, 91 :174-177
[5]   Quantum squeezed light in gravitational-wave detectors [J].
Chua, S. S. Y. ;
Slagmolen, B. J. J. ;
Shaddock, D. A. ;
McClelland, D. E. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (18)
[6]   Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector [J].
Fang, Qi ;
Zhao, Chunnong ;
Blair, Carl ;
Ju, Li ;
Blair, David G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (07)
[7]   Photoelastic characterization of Si wafers by scanning infrared polariscope [J].
Fukuzawa, M ;
Yamada, M .
JOURNAL OF CRYSTAL GROWTH, 2001, 229 (01) :22-25
[8]   Birefringence measurements on crystalline silicon [J].
Krueger, Christoph ;
Heinert, Daniel ;
Khalaidovski, Alexander ;
Steinlechner, Jessica ;
Nawrodt, Ronny ;
Schnabel, Roman ;
Lueck, Harald .
CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (01)
[9]   INFRARED STUDIES OF BIREFRINGENCE IN SILICON [J].
LEDERHANDLER, SR .
JOURNAL OF APPLIED PHYSICS, 1959, 30 (11) :1631-1638
[10]  
MATLAB, 2018, 9.7.0.1190202 (R2019b)