A DIOPHANTINE EQUATION INVOLVING SPECIAL PRIME NUMBERS

被引:2
|
作者
Dimitrov, Stoyan [1 ]
机构
[1] Tech Univ Sofia, 8 Kl Ohridski Blvd, Sofia 1000, Bulgaria
关键词
Diophantine equation; prime; exponential sum; asymptotic formula; EXPONENTIAL-SUMS; INEQUALITY;
D O I
10.21136/CMJ.2022.0469-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [.] be the floor function. In this paper, we prove by asymptotic formula that when 1 < c < 3441/2539, then every sufficiently large positive integer N can be represented in the form N = [p(1)(c)] + [p(2)(c)] + [p(3)(c)] + [p(4)(c)] + [p(5)(c)], where p(1), p(2), p(3), p(4), p(5) are primes such that p(1) = x(2) + y(2) + 1.
引用
收藏
页码:151 / 176
页数:26
相关论文
共 50 条
  • [41] SOLUTIONS OF NEGATIVE PELL EQUATION INVOLVING TWIN PRIME
    Kannan, J.
    Somanath, Manju
    Raja, K.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (05): : 869 - 874
  • [42] SOLUTIONS OF NEGATIVE PELL EQUATION INVOLVING CHEN PRIME
    Somanath, Manju
    Raja, K.
    Kannan, J.
    Kaleeswari, K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (11): : 1089 - 1095
  • [43] A ternary Diophantine inequality involving primes
    Cai, Yingchun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (08) : 2257 - 2268
  • [44] On a Diophantine Equation Concerning the Number of Integer Points in Special Domains
    L. Hajdu
    Acta Mathematica Hungarica, 1998, 78 : 59 - 70
  • [45] On the Diophantine Equation
    Zahari, N. M.
    Sapar, S. H.
    Atan, Mohd K. A.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 959 - 966
  • [46] On a diophantine equation
    Leont'ev, V. K.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 403 - 412
  • [47] On a diophantine equation
    V. K. Leont’ev
    Mathematical Notes, 2016, 100 : 403 - 412
  • [48] Diophantine approximation with smooth numbers
    Baker, Roger
    RAMANUJAN JOURNAL, 2023, 61 (01) : 49 - 54
  • [49] Diophantine approximation with smooth numbers
    Roger Baker
    The Ramanujan Journal, 2023, 61 : 49 - 54
  • [50] Inhomogeneous diophantine approximation with prime constraints
    Stephan Baier
    Anish Ghosh
    Proceedings - Mathematical Sciences, 2018, 128